Text Representation in Multi-label Classification: Two New Input Representations | SpringerLink
Skip to main content

Text Representation in Multi-label Classification: Two New Input Representations

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6594))

Included in the following conference series:

  • 1736 Accesses

Abstract

Automatic text classification is the task of assigning unseen documents to a predefined set of classes. Text representation for classification purposes has been traditionally approached using a vector space model due to its simplicity and good performance. On the other hand, multi-label automatic text classification has been typically addressed either by transforming the problem under study to apply binary techniques or by adapting binary algorithms to work with multiple labels. In this paper we present two new representations for text documents based on label-dependent term-weighting for multi-label classification. We focus on modifying the input. Performance was tested with a well-known dataset and compared to alternative techniques. Experimental results based on Hamming loss analysis show an improvement against alternative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

  2. Cristianini, N., Shawe-Taylor, J., Lodhi, H.: Latent semantic kernels. Journal of Intelligent Information Systems 18(2-3), 127–152 (2002)

    Article  Google Scholar 

  3. Fink, E.: Automatic evaluation and selection of problem-solving methods: Theory and experiments. Journal of Experimental and Theoretical Artificial Intelligence 16(2), 73–105 (2004)

    Article  MATH  Google Scholar 

  4. Joachims, T.: Learning to classify text using support vector machines – methods, theory, and algorithms. Kluwer-Springer (2002)

    Google Scholar 

  5. Keikha, M., Razavian, N.S., Oroumchian, F., Razi, H.S.: Document representation and quality of text: An analysis. In: Survey of Text Mining II: Clustering, Classifcation, and Retrieval, pp. 135–168. Springer, London (2008)

    Google Scholar 

  6. Lan, M., Tan, C.-L., Low, H.-B.: Proposing a new term weighting scheme for text categorization. In: AAAI 2006: Proceedings of the 21st National Conference on Artificial Intelligence, pp. 763–768. AAAI Press, Menlo Park (2006)

    Google Scholar 

  7. Lan, M., Tan, C.L., Su, J., Lu, Y.: Supervised and traditional term weighting methods for automatic text categorization. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 721–735 (2009)

    Article  Google Scholar 

  8. Leopold, E., Kindermann, J.: Text categorization with support vector machines. How to represent texts in input space? Machine Learning 46(1-3), 423–444 (2002)

    Article  MATH  Google Scholar 

  9. Manning, C., Schutze, H.: Foundations of statistical natural language processing. The MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  10. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing and Management: an International Journal 24(5), 513–523 (1988)

    Article  Google Scholar 

  11. Schapire, R.E., Singer, Y.: Boostexter: A boosting-based system for text categorization. Machine Learning, 135–168 (2000)

    Google Scholar 

  12. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34(1), 1–47 (2002)

    Article  Google Scholar 

  13. Tsivtsivadze, E., Pahikkala, T., Boberg, J., Salakoski, T.: Kernels for text analysis. Advances of Computational Intelligence in Industrial Systems 116, 81–97 (2008)

    Article  MATH  Google Scholar 

  14. Tsoumakas, G., Katakis, I.: Multi label classification: An overview. International Journal of Data Warehouse and Mining 3(3), 1–13 (2007)

    Article  Google Scholar 

  15. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, 2nd edn. Springer, Heidelberg (2010)

    Google Scholar 

  16. Zhang, M.-L., Zhou, Z.-H.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Transactions on Knowledge Data Engineering 18(10), 1338–1351 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alfaro, R., Allende, H. (2011). Text Representation in Multi-label Classification: Two New Input Representations. In: Dobnikar, A., Lotrič, U., Šter, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2011. Lecture Notes in Computer Science, vol 6594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20267-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20267-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20266-7

  • Online ISBN: 978-3-642-20267-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics