Two One-Pass Algorithms for Data Stream Classification Using Approximate MEBs | SpringerLink
Skip to main content

Two One-Pass Algorithms for Data Stream Classification Using Approximate MEBs

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6594))

Included in the following conference series:

Abstract

It has been recently shown that the quadratic programming formulation underlying a number of kernel methods can be treated as a minimal enclosing ball (MEB) problem in a feature space where data has been previously embedded. Core Vector Machines (CVMs) in particular, make use of this equivalence in order to compute Support Vector Machines (SVMs) from very large datasets in the batch scenario. In this paper we study two algorithms for online classification which extend this family of algorithms to deal with large data streams. Both algorithms use analytical rules to adjust the model extracted from the stream instead of recomputing the entire solution on the augmented dataset. We show that these algorithms are more accurate than the current extension of CVMs to handle data streams using an analytical rule instead of solving large quadratic programs. Experiments also show that the online approaches are considerably more efficient than periodic computation of CVMs even though warm start is being used.

This work was supported by Research Grants 1110854 Fondecyt and Basal FB0821, “Centro Científico-Tecnológico de Valparaíso”, UTFSM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, C. (ed.): Data Streams, Models and Algorithms. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  2. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2010)

    Google Scholar 

  3. Clarkson, K.: Coresets, sparse greedy approximation, and the frank-wolfe algorithm. In: Proceedings of SODA 2008, pp. 922–931. SIAM, Philadelphia (2008)

    Google Scholar 

  4. Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-aggressive algorithms. J. of Machine Learning Research 7, 551–585 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Dekel, O., Shalev-Shwartz, S., Singer, Y.: The forgetron: A kernel-based perceptron on a budget. SIAM Journal of Computing 37(5), 1342–1372 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Frandi, E., Gasparo, M.-G., Lodi, S., Ñanculef, R., Sartori, C.: A new algorithm for training sVMs using approximate minimal enclosing balls. In: Bloch, I., Cesar Jr., R.M. (eds.) CIARP 2010. LNCS, vol. 6419, pp. 87–95. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Hettich, S., Bay, S.: The UCI KDD Archive (2010), http://kdd.ics.uci.edu

  8. Kivinen, J.: Online learning of linear classifiers, pp. 235–257 (2003)

    Google Scholar 

  9. Kivinen, J., Smola, A.J., Williamson, R.C.: Online learning with kernels. IEEE Transactions on Signal Processing 52(8), 2165–2176 (2004)

    Article  MathSciNet  Google Scholar 

  10. Lodi, S., Ñanculef, R., Sartori, C.: Single-pass distributed learning of multi-class svms using core-sets. In: Proceedings of the SDM 2010, pp. 257–268. SIAM, Philadelphia (2010)

    Google Scholar 

  11. Léon Bottou, D.D., Chapelle, O., Weston, J. (eds.): Large Scale Kernel Machines. MIT Press, Cambridge (2007)

    Google Scholar 

  12. Rai, P., Daumé, H., Venkatasubramanian, S.: Streamed learning: one-pass svms. In: IJCAI 2009: Proceedings of the 21st International Jont Conference on Artifical Intelligence, pp. 1211–1216. Morgan Kaufmann Publishers, San Francisco (2009)

    Google Scholar 

  13. Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  14. Shalev-Shwartz, S., Singer, Y.: A primal-dual perspective of online learning algorithms. Machine Learning 69(2-3), 115–142 (2007)

    Article  Google Scholar 

  15. Tsang, I., Kocsor, A., Kwok, J.: Simpler core vector machines with enclosing balls. In: ICML 2007, pp. 911–918. ACM, New York (2007)

    Google Scholar 

  16. Tsang, I., Kocsor, A., Kwok, J.: LibCVM Toolkit (2009)

    Google Scholar 

  17. Tsang, I., Kwok, J., Cheung, P.-M.: Core vector machines: Fast svm training on very large data sets. Journal of Machine Learning Research 6, 363–392 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Tsang, I., Kwok, J., Zurada, J.: Generalized core vector machines. IEEE Transactions on Neural Networks 17(5), 1126–1140 (2006)

    Article  Google Scholar 

  19. Wang, D., Zhang, B., Zhang, P., Qiao, H.: An online core vector machine with adaptive meb adjustment. Pattern Recognition 43(10), 3468–3482 (2010)

    Article  MATH  Google Scholar 

  20. Yildirim, E.A.: Two algorithms for the minimum enclosing ball problem. SIAM Journal on Optimization 19(3), 1368–1391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zarrabi-Zadeh, H., Chan, T.M.: A simple streaming algorithm for minimum enclosing balls. In: Proceedings of the CCCG 2006 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ñanculef, R., Allende, H., Lodi, S., Sartori, C. (2011). Two One-Pass Algorithms for Data Stream Classification Using Approximate MEBs. In: Dobnikar, A., Lotrič, U., Šter, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2011. Lecture Notes in Computer Science, vol 6594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20267-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20267-4_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20266-7

  • Online ISBN: 978-3-642-20267-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics