Abstract
In this paper we propose and analyse methods for expanding state-of-the-art performance on text classification. We put forward an ensemble-based structure that includes Support Vector Machines (SVM) and Artificial Immune Systems (AIS). The underpinning idea is that SVM-like approaches can be enhanced with AIS approaches which can capture dynamics in models. While having radically different genesis, and probably because of that, SVM and AIS can cooperate in a committee setting, using a heterogeneous ensemble to improve overall performance, including a confidence on each system classification as the differentiating factor.
Results on the well-known Reuters-21578 benchmark are presented, showing promising classification performance gains, resulting in a classification that improves upon all baseline contributors of the ensemble committee.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sebastiani, F.: Classification of text, automatic. In: Brown, K. (ed.) The Encyclopedia of Language and Linguistics, vol. 14, pp. 457–462. Elsevier, Amsterdam (2006)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1999)
de Castro, L., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, Heidelberg (2002)
Cohen, I.: Tending Adam’s Garden: evolving the cognitive immune self. Academic Press, San Diego (2004)
Kim, J., Bentley, P., Aickelin, U., Greensmith, J., Tedesco, G., Twycross, J.: Immune system approaches to intrusion detection - a review. Natural Computing 6(4), 413–466 (2007)
Abi-Haidar, A., Rocha, L.: Adaptive Spam Detection Inspired by the Immune System. In: Proc. of the 11th Int. Conference on the Simulation and Synthesis of Living Systems, vol. 11, pp. 1–8 (2008)
Oda, T., White, T.: Immunity from spam: An analysis of an artificial immune system for junk email detection. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 276–289. Springer, Heidelberg (2005)
Abi-Haidar, A., Rocha, L.: Biomedical article classification using an agent-based model of T-cell cross-regulation. In: Hart, E., McEwan, C., Timmis, J., Hone, A. (eds.) ICARIS 2010. LNCS, vol. 6209, pp. 237–249. Springer, Heidelberg (2010)
Pöllä, M.: A generative model for self/Non-self discrimination in strings. In: Kolehmainen, M., Toivanen, P., Beliczynski, B. (eds.) ICANNGA 2009. LNCS, vol. 5495, pp. 293–302. Springer, Heidelberg (2009)
Greensmith, J., Cayzer, S.: An artificial immune system approach to semantic document classification. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 136–146. Springer, Heidelberg (2003)
Grossman, Z., Paul, W.: Adaptive cellular interactions in the immune system: The tunable activation threshold and the significance of subthreshold responses. Proc. National Academy of Sciences 89(21), 10365–10369 (1992)
Carneiro, J., Paixão, T., Milutinovic, D., Sousa, J., Leon, K., Gardner, R., Faro, J.: Immunological self-tolerance: Lessons from mathematical modeling. J. Computational and Applied Mathematics 184(1), 77–100 (2005)
Antunes, M., Correia, M.: Self tolerance by tuning t-cell activation: an artificial immune system for anomaly detection. In: Lnicst, S. (ed.) Bionetics (2010)
Schölkopf, B., Burges, C., Smola, A.: Advances in Kernel Methods: Support Vector Machines. MIT Press, Cambridge (1998)
Kuncheva, L.: Combining Patt Classifiers, Methods and Algorithms. Wiley, Chichester (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Antunes, M., Silva, C., Ribeiro, B., Correia, M. (2011). A Hybrid AIS-SVM Ensemble Approach for Text Classification. In: Dobnikar, A., Lotrič, U., Šter, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2011. Lecture Notes in Computer Science, vol 6594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20267-4_36
Download citation
DOI: https://doi.org/10.1007/978-3-642-20267-4_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20266-7
Online ISBN: 978-3-642-20267-4
eBook Packages: Computer ScienceComputer Science (R0)