Incorporating a Priori Knowledge from Detractor Points into Support Vector Classification | SpringerLink
Skip to main content

Incorporating a Priori Knowledge from Detractor Points into Support Vector Classification

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6594))

Included in the following conference series:

Abstract

In this article, we extend the idea of a priori knowledge in the form of detractor points presented recently for Support Vector Classification. We show that detractor points can belong to the new type of support vectors – training samples which lie outside a margin bounded region. We present the new application for a priori knowledge from detractor points – improving generalization performance of Support Vector Classification while reducing a complexity of a model by removing a bunch of support vectors. The experiments show that indeed the new type of a priori knowledge improves generalization performance of reduced models. The tests were performed on selected classification data sets, and on stock price data from public domain repositories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

  2. Fung, G.M., Mangasarian, O.L., Shavlik, J.: Knowledge-based nonlinear kernel classifiers. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 102–113. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Fung, G.M., Mangasarian, O.L., Shavlik, J.W.: Knowledge-based support vector machine classifiers. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, vol. 15, pp. 521–528. MIT Press, Cambridge (2003)

    Google Scholar 

  4. Jean-Baptiste Pothin, C.R.: Incorporating prior information into support vector machines in the form of ellipsoidal knowledge sets (2006)

    Google Scholar 

  5. Joachims, T.: Transductive inference for text classification using support vector machines. In: ICML 1999: Proceedings of the Sixteenth International Conference on Machine Learning, pp. 200–209. Morgan Kaufmann Publishers Inc., San Francisco (1999)

    Google Scholar 

  6. Karasuyama, M., Takeuchi, I., Nakano, R.: Reducing svr support vectors by using backward deletion. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part III. LNCS (LNAI), vol. 5179, pp. 76–83. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Lauer, F., Bloch, G.: Incorporating prior knowledge in support vector machines for classification: A review. Neurocomput. 71(7-9), 1578–1594 (2008)

    Article  Google Scholar 

  8. Le, Q.V., Smola, A.J., Gärtner, T.: Simpler knowledge-based support vector machines. In: ICML 2006: Proceedings of the 23rd International Conference on Machine Learning, pp. 521–528. ACM, New York (2006)

    Google Scholar 

  9. Libsvm data sets, http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

  10. Lin, C.F., Wang, S.D.: Fuzzy support vector machines. IEEE Transaction on Neural Networks 13(2), 464–471 (2002)

    Article  Google Scholar 

  11. Mangasarian, O.L., Wild, E.W.: Nonlinear knowledge-based classification. IEEE Transactions on Neural Networks 19(10), 1826–1832 (2008)

    Article  Google Scholar 

  12. Orchel, M.: Support vector machines: Sequential multidimensional subsolver (sms). In: Dabrowski (professor), A. (ed.) Signal Processing: Algorithms, Architectures, Arrangements, and Applications SPA 2007. IEEE - The Institute of Electrical and Electronics Engineers Inc. Region 8 - Europe, Middle East and Africa. Chapter Circuits and Systems. Poland Section. Poznan University of Technology. Faculty of Computing Science and Management. Division of Signal Processing and Electronic Systems, pp. 135–140 (September 2007)

    Google Scholar 

  13. Platt, J.C.: Fast training of support vector machines using sequential minimal optimization, pp. 185–208. MIT Press, Cambridge (1999)

    Google Scholar 

  14. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience, Hoboken (1998)

    MATH  Google Scholar 

  15. Wang, L., Xue, P., Chan, K.L.: Incorporating prior knowledge into svm for image retrieval. In: ICPR 2004: 17th International Conference on Proceedings of the Pattern Recognition, vol. 2, pp. 981–984. IEEE Computer Society, Washington, DC (2004)

    Chapter  Google Scholar 

  16. Wang, M., Yang, J., Liu, G.P., Xu, Z.J., Chou, K.C.: Weighted-support vector machines for predicting membrane protein types based on pseudo amino acid composition. Protein Engineering, Design & Selection 17(6), 509–516 (2004)

    Article  Google Scholar 

  17. Wu, X., Srihari, R.: Incorporating prior knowledge with weighted margin support vector machines. In: KDD 2004: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 326–333. ACM, New York (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Orchel, M. (2011). Incorporating a Priori Knowledge from Detractor Points into Support Vector Classification. In: Dobnikar, A., Lotrič, U., Šter, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2011. Lecture Notes in Computer Science, vol 6594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20267-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20267-4_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20266-7

  • Online ISBN: 978-3-642-20267-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics