Chaotic Exploration Generator for Evolutionary Reinforcement Learning Agents in Nondeterministic Environments | SpringerLink
Skip to main content

Chaotic Exploration Generator for Evolutionary Reinforcement Learning Agents in Nondeterministic Environments

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6594))

Included in the following conference series:

Abstract

In reinforcement learning exploration phase, it is necessary to introduce a process of trial and error to discover better rewards obtained from environment. To this end, one usually uses the uniform pseudorandom number generator in exploration phase. However, it is known that chaotic source also provides a random-like sequence similar to stochastic source. In this paper we have employed the chaotic generator in the exploration phase of reinforcement learning in a nondeterministic maze problem. We obtained promising results in the so called maze problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  2. Cuayáhuitl, H.: Hierarchical Reinforcement Learning for Spoken Dialogue Systems, PhD thesis, University of Edinburgh (2009)

    Google Scholar 

  3. Vidal, J.M.: Fundamentals of Multi Agent Systems (2009) (unpublished)

    Google Scholar 

  4. Shoham, Y., Leyton-Brown, K.: MULTIAGENT SYSTEMS Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  5. Morihiro, K., Matsui, N., Nishimura, H.: Effects of Chaotic Exploration on Reinforcement Maze Learning. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3213, pp. 833–839. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Kellert, S.H.: In the Wake of Chaos: Unpredictable Order in Dynamical Systems. University of Chicago Press, Chicago (1993) ISBN 0226429768

    Book  MATH  Google Scholar 

  7. Meng, X.P., Meng, J., Lui, L.J.: Quantum Chaotic Reinforcement Learning. In: Fourth International Conference on Natural Computation (2008)

    Google Scholar 

  8. Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer, Heidelberg (1989)

    Book  MATH  Google Scholar 

  9. Ott, E., Sauer, T., Yorke, J.A.: Coping with Chaos: Analysis of Chaotic Data and the Exploitation of Chaotic Systems. John Wiley & Sons, Inc., New York (1994)

    MATH  Google Scholar 

  10. Handa, H.: Evolutionary Computation on Multitask Reinforcement Learning Problems. In: IEEE International Conference on Networking, Sensing and Control, pp. 685–688 (2007)

    Google Scholar 

  11. Goh, K., Tan, K.: Evolutionary Multi-objective Optimization in Uncertain Environments. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  12. Jiang, J.: A Framework for Aggregation of Multiple Reinforcement Learning Algorithms. PhD thesis, University of Waterloo (2007)

    Google Scholar 

  13. Beigi, A., Parvin, H., Mozayani, N., Minaei, B.: Improving Reinforcement Learning Agents Using Genetic Algorithms. In: An, A., Lingras, P., Petty, S., Huang, R. (eds.) AMT 2010. LNCS, vol. 6335, pp. 330–337. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beigi, A., Mozayani, N., Parvin, H. (2011). Chaotic Exploration Generator for Evolutionary Reinforcement Learning Agents in Nondeterministic Environments. In: Dobnikar, A., Lotrič, U., Šter, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2011. Lecture Notes in Computer Science, vol 6594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20267-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20267-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20266-7

  • Online ISBN: 978-3-642-20267-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics