Optimizing the Robustness of Scale-Free Networks with Simulated Annealing | SpringerLink
Skip to main content

Optimizing the Robustness of Scale-Free Networks with Simulated Annealing

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6594))

Included in the following conference series:

Abstract

We study the robustness of Barabási-Albert scale-free networks with respect to intentional attacks to highly connected nodes. Using the simulated annealing optimization heuristic, we rewire the networks such that their robustness to network fragmentation is improved but without changing neither the degree distribution nor the connectivity of single nodes. We show that simulated annealing improves on the results previously obtained with a simple hill-climbing procedure. We also introduce a local move operator in order to facilitate actual rewiring and show numerically that the results are almost equally good.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albert, R., Jeong, H., Barabasi, A.L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)

    Article  Google Scholar 

  3. Amaral, L.A.N., Scala, A., Barthélemy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. USA 97, 11149–11152 (2000)

    Article  Google Scholar 

  4. Bollobás, B.: Modern Graph Theory. Springer, Heidelberg (1998)

    Book  MATH  Google Scholar 

  5. Cohen, R., Erez, K., Avraham, D.B., Havlin, S.: Breakdown of the Internet under intentional attack. Phys. Rev. Lett. 86, 3682–3685 (2001)

    Article  Google Scholar 

  6. Csardi, G., Nepusz, T.: The igraph software package for complex network research. Inter Journal Complex Systems, 1695 (2006)

    Google Scholar 

  7. Holme, P., Kin, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65, 056109 (2002)

    Article  Google Scholar 

  8. Kirkpatrick, S., Gelatt, C.D., Vecchi, P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001)

    Article  Google Scholar 

  10. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    Book  MATH  Google Scholar 

  11. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2010)

    Google Scholar 

  12. Schneider, C.M., Andrade, J.S., Shinbrot, T., Herrmann, H.J.: Protein interaction networks are fragile against random attacks and robust against malicious attacks. Tech. rep. (2010)

    Google Scholar 

  13. Schneider, C.M., Moreira, A., Andrade, J.S., Havlin, S., Herrmann, H.J.: Onion-like network topology enhances robustness against malicious attacks. J. Stat. Mech. (2010) (to appear)

    Google Scholar 

  14. Schneider, J.J., Kirkpatrck, S.: Stochastic Optimization. Springer, Berlin (2006)

    Google Scholar 

  15. Valente, A.X.C.N., Sarkar, A., Stone, H.: 2-peak and 3-peak optimal complex networks. Phys. Rev. Lett. 92, 118702 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buesser, P., Daolio, F., Tomassini, M. (2011). Optimizing the Robustness of Scale-Free Networks with Simulated Annealing. In: Dobnikar, A., Lotrič, U., Šter, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2011. Lecture Notes in Computer Science, vol 6594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20267-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20267-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20266-7

  • Online ISBN: 978-3-642-20267-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics