Asymmetric k-Means Algorithm | SpringerLink
Skip to main content

Asymmetric k-Means Algorithm

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6594))

Included in the following conference series:

Abstract

In this paper, an asymmetric version of the k-means clustering algorithm is proposed. The asymmetry arises caused by the use of asymmetric dissimilarities in the k-means algorithm. Application of asymmetric measures of dissimilarity is motivated with a basic nature of the k-means algorithm, which uses dissimilarities in an asymmetric manner. Clusters centroids are treated as the dominance points governing the asymmetric relationships in the entire cluster analysis. The results of experimental study on the real data have shown the superiority of asymmetric dissimilarities employed for the k-means method over their symmetric counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Steinhaus, H.: Sur la Division des Corp Matériels en Parties. Bulletin de l’Académie Polonaise des Sciences, C1. III 4(12), 801–804 (1956)

    MATH  Google Scholar 

  2. MacQueen, J.: Some Methods for Classification and Analysis of Multivariate Observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  3. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An Efficient k-Means Clustering Algorithm: Analysis and Implemetation. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 881–892 (2002)

    Article  Google Scholar 

  4. Biau, G., Devroye, L., Lugosi, G.: On the Performance of Clustering in Hilbert Spaces. IEEE Transactions on Information Theory 54(2), 781–790 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Olszewski, D., Kolodziej, M., Twardy, M.: A Probabilistic Component for K-Means Algorithm and its Application to Sound Recognition. Przeglad Elektrotechniczny 86(6), 185–190 (2010)

    Google Scholar 

  6. Okada, A., Imaizumi, T.: Asymmetric Multidimensional Scaling of Two-Mode Three-Way Proximities. Journal of Classification 14(2), 195–224 (1997)

    Article  MATH  Google Scholar 

  7. Okada, A.: An Asymmetric Cluster Analysis Study of Car Switching Data. In: Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Heidelberg (2000)

    Google Scholar 

  8. Okada, A., Imaizumi, T.: Multidimensional Scaling of Asymmetric Proximities with a Dominance Point. In: Advances in Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization, pp. 307–318. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000), circulation Electronic Pages: http://circ.ahajournals.org/cgi/content/full/101/23/e215

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Olszewski, D. (2011). Asymmetric k-Means Algorithm. In: Dobnikar, A., Lotrič, U., Šter, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2011. Lecture Notes in Computer Science, vol 6594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20267-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20267-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20266-7

  • Online ISBN: 978-3-642-20267-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics