Document-Aware Graph Models for Query-Oriented Multi-document Summarization | SpringerLink
Skip to main content

Document-Aware Graph Models for Query-Oriented Multi-document Summarization

  • Chapter
Multimedia Analysis, Processing and Communications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 346))

Abstract

Sentence ranking is the issue of most concern in document summarization. In recent years, graph-based summarization models and sentence ranking algorithms have drawn considerable attention from the extractive summarization community due to their capability of recursively calculating sentence significance from the entire text graph that links sentences together rather than relying on single sentence alone. However, when dealing with multi-document summarization, existing sentence ranking algorithms often assemble a set of documents into one large file. The document dimension is ignored. In this work, we develop two alternative models to integrate the document dimension into existing sentence ranking algorithms. They are the one-layer (i.e. sentence layer) document-sensitive model and the two-layer (i.e. document and sentence layers) mutual reinforcement model. While the former implicitly incorporates the document’s influence in sentence ranking, the latter explicitly formulates the mutual reinforcement among sentence and document during ranking. The effectiveness of the proposed models and algorithms are examined on the DUC query-oriented multi-document summarization data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 37751
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 47189
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 47189
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. The ACM Press, New York (1999)

    Google Scholar 

  2. Brin, S., Page, L.: The Anatomy of a Large-scale Hypertextual Web Search Engine. Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)

    Article  Google Scholar 

  3. DUC, http://duc.nist.gov/

  4. DUC Reports, http://www-nlpir.nist.gov/projects/duc/pubs.html

  5. Erkan, G., Radev, D.R.: LexRank: Graph-based Centrality as Salience in Text Summarization. Journal of Artificial Intelligence Research 22, 457–479 (2004)

    Google Scholar 

  6. Haveliwala, T.H.: Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm for Web Search. IEEE Transactions on Knowledge and Data Engineering 15(4), 784–796 (2003)

    Article  Google Scholar 

  7. Jones, K.S.: Automatic Summarising: The State of the art. Information Processing and Management 43, 1449–1481 (2007)

    Article  Google Scholar 

  8. Langville, A.N., Meyer, C.D.: Deeper Inside PageRank. Journal of Internet Mathematics 1(3), 335–380 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Leskovec, J., Grobelnik, M., Milic-Frayling, N.: Learning Sub-structures of Document Semantic Graphs for Document Summarization. In: Proceedings of Link KDD Workshop, pp. 133–138 (2004)

    Google Scholar 

  10. Li, W.J., Wu, M.L., Lu, Q., Xu, W., Yuan, C.F.: Extractive Summarization using Intra- and Inter-Event Relevance. In: Proceedings of ACL/COLING, pp. 369–376 (2006)

    Google Scholar 

  11. Lin, C.Y., Hovy, E.: The Automated Acquisition of Topic Signature for Text Summarization. In: Proceedings of 18th COLING, pp. 495–501 (2000)

    Google Scholar 

  12. Lin, C.Y., Hovy, E.: Automatic Evaluation of Summaries Using N-gram Co-occurrence Statistics. In: Proceedings of HLT-NAACL, pp. 71–78 (2003)

    Google Scholar 

  13. Lin, Z.H., Chua, T.S., Kan, M.Y., Lee, W.S., Qiu, L., Ye, S.R.: NUS at DUC 2007: Using Evolutionary Models for Text. In: Proceedings of Document Understanding Conference (2007)

    Google Scholar 

  14. Mihalcea, R.: Graph-based Ranking Algorithms for Sentence Extraction, Applied to Text Summarization. In: Proceedings of ACL 2004, Article No. 20 (2004)

    Google Scholar 

  15. Mihalcea, R.: Language Independent Extractive Summarization. In: Proceedings of ACL 2005, pp. 49–52 (2005)

    Google Scholar 

  16. Kleinberg, J.M.: Authoritative Sources in a Hyperlinked Environment. In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 668–677 (1999)

    Google Scholar 

  17. Mani, I., Maybury, M.T. (eds.): Advances in Automatic Summarization. The MIT Press, Cambridge (1999)

    Google Scholar 

  18. Otterbacher, J., Erkan, G., Radev, D.R.: Using Random Walks for Question-focused Sentence Retrieval. In: Proceedings of HLT/EMNLP, pp. 915–922 (2005)

    Google Scholar 

  19. Ouyang, Y., Li, S.Y., Li, W.J.: Developing Learning Strategies for Topic-Based Summarization. In: Proceedings of the 16th ACM Conference on Information and Knowledge Management, pp. 79–86 (2007)

    Google Scholar 

  20. Over, P., Dang, H., Harman, D.: DUC in Context. Information Processing and Management 43(6), 1506–1520 (2007)

    Article  Google Scholar 

  21. Porter Stemmer, http://www.tartarus.org/~martin/PorterStemmer

  22. Radev, D.R., Jing, H.Y., Stys, M., Tam, D.: Centroid-based Summarization of Multiple Documents. Information Processing and Management 40, 919–938 (2004)

    Article  MATH  Google Scholar 

  23. Vanderwende, L., Banko, M., Menezes, A.: Event-Centric Summary Generation. In: Working Notes of DUC 2004 (2004)

    Google Scholar 

  24. Wan, X.J., Yang, J.W., Xiao, J.G.: Using Cross-document Random Walks for Topic-focused Multi-document Summarization. In: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 1012–1018 (2006)

    Google Scholar 

  25. Wan, X.J., Yang, J.W., Xiao, J.G.: Towards Iterative Reinforcement Approach for Simultaneous Document Summarization and Keyword Extraction. In: Proceedings of ACL, pp. 552–559 (2007)

    Google Scholar 

  26. Wei, F.R., Li, W.J., Lu, Q., He, Y.X.: A Cluster-Sensitive Graph Model for Query-Oriented Multi-document Summarization. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 446–453. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Wei, F.R., Li, W.J., Lu, Q., He, Y.X.: Query-Sensitive Mutual Reinforcement Chain with Its Application in Query-Oriented Multi-Document Summarization. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 283–290 (2008)

    Google Scholar 

  28. Wong, K.F., Wu, M.L., Li, W.J.: Extractive Summarization Using Supervised and Semi-Supervised Learning. In: Proceedings of the 22nd International Conference on Computational Linguistics, pp. 985–992 (2008)

    Google Scholar 

  29. Yoshioka, M., Haraguchi, M.: Multiple News Articles Summarization based on Event Reference Information. In: Working Notes of NTCIR-4 (2004)

    Google Scholar 

  30. Zha, H.Y.: Generic Summarization and Key Phrase Extraction using Mutual Reinforcement Principle and Sentence Clustering. In: Proceedings of the 25th ACM SIGIR, pp. 113–120 (2002)

    Google Scholar 

  31. Padmanabhan, D., Desikan, P., Srivastava, J., Riaz, K.: WICER: A Weighted Inter-Cluster Edge Ranking for Clustered Graphs. In: Proceedings of 2005 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 522–528 (2005)

    Google Scholar 

  32. Wei, F.R., Li, W.J., Lu, Q., He, Y.X.: Applying Two-Level Mutual Reinforcement Ranking in Query-Oriented Multi-document Summarization. Journal of the American Society for Information Science and Technology (2009) (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wei, F., Li, W., He, Y. (2011). Document-Aware Graph Models for Query-Oriented Multi-document Summarization. In: Lin, W., Tao, D., Kacprzyk, J., Li, Z., Izquierdo, E., Wang, H. (eds) Multimedia Analysis, Processing and Communications. Studies in Computational Intelligence, vol 346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19551-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19551-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19550-1

  • Online ISBN: 978-3-642-19551-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics