Data Structures and Transformations for Physically Based Simulation on a GPU | SpringerLink
Skip to main content

Data Structures and Transformations for Physically Based Simulation on a GPU

  • Conference paper
High Performance Computing for Computational Science – VECPAR 2010 (VECPAR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6449))

Abstract

As general purpose computing on Graphics Processing Units (GPGPU) matures, more complicated scientific applications are being targeted to utilize the data-level parallelism available on a GPU. Implementing physically-based simulation on data-parallel hardware requires preprocessing overhead which affects application performance. We discuss our implementation of physics-based data structures that provide significant performance improvements when used on data-parallel hardware. These data structures allow us to maintain a physics-based abstraction of the underlying data, reduce programmer effort and obtain 6x-8x speedup over previously implemented GPU kernels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. NVIDIA: NVIDIA CUDA Programming Guide 2.0 (2008), http://www.nvidia.com/cuda

  2. NVIDIA: NVIDIA Physx (2008), http://www.nvidia.com/physx

  3. Nguyen, H.: Gpu gems 3. Addison-Wesley Professional, Reading (2007)

    Google Scholar 

  4. Harris, M.: Optimizing parallel reduction in cuda, NVIDIA Developer Technology (2007)

    Google Scholar 

  5. Luebke, D., Harris, M., Govindaraju, N., Lefohn, A., Houston, M., Owens, J., Segal, M., Papakipos, M., Buck, I.: GPGPU: general-purpose computation on graphics hardware. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (2006)

    Google Scholar 

  6. Allard, J., Cotin, S., Faure, F., Bensoussan, P.J., Poyer, F., Duriez, C., Delingette, H., Grisoni, L.: Sofa-an open source framework for medical simulation. Studies in Health Technology and Informatics 125, 13

    Google Scholar 

  7. Lawlor, O., Chakravorty, S., Wilmarth, T., Choudhury, N., Dooley, I., Zheng, G., Kale, L.: ParFUM: A Parallel Framework for Unstructured Meshes for Scalable Dynamic Physics Applications. Engineering with Computers 22, 215–235 (2006)

    Article  Google Scholar 

  8. Becker, C., Kilian, S., Turek, S., Group, F.E.A.S.T.: Some concepts of the software package FEAST. In: Hernández, V., Palma, J.M.L.M., Dongarra, J. (eds.) VECPAR 1998. LNCS, vol. 1573, pp. 271–284. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  9. van Dyk, D., Geveler, M., Mallach, S., Ribbrock, D., Gddeke, D., Gutwenger, C.: HONEI: A collection of libraries for numerical computations targeting multiple processor architectures. Computer Physics Communications 180(12), 2534–2543 (2009)

    Article  MATH  Google Scholar 

  10. Anderson, J.A., Lorenz, C.D., Travesset, A.: General purpose molecular dynamics simulations fully implemented on graphics processing units. Journal of Computational Physics 227, 5342–5359 (2008)

    Article  MATH  Google Scholar 

  11. Kirby, R.C., Logg, A.: A compiler for variational forms. ACM Trans. Math. Softw. 32, 417–444

    Google Scholar 

  12. Bro-Nielsen, M.: Finite element modeling in surgery simulation. Proceedings of the IEEE 86, 283–291 (1998)

    Article  Google Scholar 

  13. Garcia, E.: Information Retrieval Tutorial (2005), http://www.miislita.com

  14. Teran, J., Sifakis, E., Irving, G., Fedkiw, R.: Robust quasistatic finite elements and flesh simulation. In: SCA 2005: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2005)

    Google Scholar 

  15. Kerdok, A.E., Cotin, S.M., Ottensmeyer, M.P., Galea, A.M., Howe, R.D., Dawson, S.L.: Truth cube: Establishing physical standards for soft tissue simulation. Medical Image Analysis 7, 283–291 (2003)

    Article  Google Scholar 

  16. de Farias, T.S.M., Almeida, M.W.S., Teixeira, J.M.X., Teichrieb, V., Kelner, J.: A High Performance Massively Parallel Approach for Real Time Deformable Body Physics Simulation. In: 20th International Symposium on Computer Architecture and High Performance Computing 2008. SBAC-PAD 2008, pp. 45–52 (2008)

    Google Scholar 

  17. Joselli, M., Clua, E., Montenegro, A.C., Aura Pagliosa, P.: A new physics engine with automatic process distribution between CPU-GPU. In: Sandbox 2008: Proceedings of the 2008 ACM SIGGRAPH Symposium on Video Games, pp. 149–156 (2008)

    Google Scholar 

  18. Coumans, E.: Bullet physics library (2009), http://www.bulletphysics.com

  19. The OpenCL Specification Munshi, A, Khronos OpenCL Working Group (2009)

    Google Scholar 

  20. Fedkiw, R., Stam, J., Jensen, H.W.: PhysBAM, http://physbam.stanford.edu

  21. Melek, Z., Keyser, J.: Multi-representation interaction for physically based modeling. In: SPM 2005: Proceedings of the 2005 ACM Symposium on Solid and Physical Modeling, pp. 187–196. ACM, New York (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mistry, P., Schaa, D., Jang, B., Kaeli, D., Dvornik, A., Meglan, D. (2011). Data Structures and Transformations for Physically Based Simulation on a GPU. In: Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C. (eds) High Performance Computing for Computational Science – VECPAR 2010. VECPAR 2010. Lecture Notes in Computer Science, vol 6449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19328-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19328-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19327-9

  • Online ISBN: 978-3-642-19328-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics