Abstract
As general purpose computing on Graphics Processing Units (GPGPU) matures, more complicated scientific applications are being targeted to utilize the data-level parallelism available on a GPU. Implementing physically-based simulation on data-parallel hardware requires preprocessing overhead which affects application performance. We discuss our implementation of physics-based data structures that provide significant performance improvements when used on data-parallel hardware. These data structures allow us to maintain a physics-based abstraction of the underlying data, reduce programmer effort and obtain 6x-8x speedup over previously implemented GPU kernels.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
NVIDIA: NVIDIA CUDA Programming Guide 2.0 (2008), http://www.nvidia.com/cuda
NVIDIA: NVIDIA Physx (2008), http://www.nvidia.com/physx
Nguyen, H.: Gpu gems 3. Addison-Wesley Professional, Reading (2007)
Harris, M.: Optimizing parallel reduction in cuda, NVIDIA Developer Technology (2007)
Luebke, D., Harris, M., Govindaraju, N., Lefohn, A., Houston, M., Owens, J., Segal, M., Papakipos, M., Buck, I.: GPGPU: general-purpose computation on graphics hardware. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (2006)
Allard, J., Cotin, S., Faure, F., Bensoussan, P.J., Poyer, F., Duriez, C., Delingette, H., Grisoni, L.: Sofa-an open source framework for medical simulation. Studies in Health Technology and Informatics 125, 13
Lawlor, O., Chakravorty, S., Wilmarth, T., Choudhury, N., Dooley, I., Zheng, G., Kale, L.: ParFUM: A Parallel Framework for Unstructured Meshes for Scalable Dynamic Physics Applications. Engineering with Computers 22, 215–235 (2006)
Becker, C., Kilian, S., Turek, S., Group, F.E.A.S.T.: Some concepts of the software package FEAST. In: Hernández, V., Palma, J.M.L.M., Dongarra, J. (eds.) VECPAR 1998. LNCS, vol. 1573, pp. 271–284. Springer, Heidelberg (1999)
van Dyk, D., Geveler, M., Mallach, S., Ribbrock, D., Gddeke, D., Gutwenger, C.: HONEI: A collection of libraries for numerical computations targeting multiple processor architectures. Computer Physics Communications 180(12), 2534–2543 (2009)
Anderson, J.A., Lorenz, C.D., Travesset, A.: General purpose molecular dynamics simulations fully implemented on graphics processing units. Journal of Computational Physics 227, 5342–5359 (2008)
Kirby, R.C., Logg, A.: A compiler for variational forms. ACM Trans. Math. Softw. 32, 417–444
Bro-Nielsen, M.: Finite element modeling in surgery simulation. Proceedings of the IEEE 86, 283–291 (1998)
Garcia, E.: Information Retrieval Tutorial (2005), http://www.miislita.com
Teran, J., Sifakis, E., Irving, G., Fedkiw, R.: Robust quasistatic finite elements and flesh simulation. In: SCA 2005: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2005)
Kerdok, A.E., Cotin, S.M., Ottensmeyer, M.P., Galea, A.M., Howe, R.D., Dawson, S.L.: Truth cube: Establishing physical standards for soft tissue simulation. Medical Image Analysis 7, 283–291 (2003)
de Farias, T.S.M., Almeida, M.W.S., Teixeira, J.M.X., Teichrieb, V., Kelner, J.: A High Performance Massively Parallel Approach for Real Time Deformable Body Physics Simulation. In: 20th International Symposium on Computer Architecture and High Performance Computing 2008. SBAC-PAD 2008, pp. 45–52 (2008)
Joselli, M., Clua, E., Montenegro, A.C., Aura Pagliosa, P.: A new physics engine with automatic process distribution between CPU-GPU. In: Sandbox 2008: Proceedings of the 2008 ACM SIGGRAPH Symposium on Video Games, pp. 149–156 (2008)
Coumans, E.: Bullet physics library (2009), http://www.bulletphysics.com
The OpenCL Specification Munshi, A, Khronos OpenCL Working Group (2009)
Fedkiw, R., Stam, J., Jensen, H.W.: PhysBAM, http://physbam.stanford.edu
Melek, Z., Keyser, J.: Multi-representation interaction for physically based modeling. In: SPM 2005: Proceedings of the 2005 ACM Symposium on Solid and Physical Modeling, pp. 187–196. ACM, New York (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mistry, P., Schaa, D., Jang, B., Kaeli, D., Dvornik, A., Meglan, D. (2011). Data Structures and Transformations for Physically Based Simulation on a GPU. In: Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C. (eds) High Performance Computing for Computational Science – VECPAR 2010. VECPAR 2010. Lecture Notes in Computer Science, vol 6449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19328-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-19328-6_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19327-9
Online ISBN: 978-3-642-19328-6
eBook Packages: Computer ScienceComputer Science (R0)