Reconstructing Mass-Conserved Water Surfaces Using Shape from Shading and Optical Flow | SpringerLink
Skip to main content

Reconstructing Mass-Conserved Water Surfaces Using Shape from Shading and Optical Flow

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6495))

Included in the following conference series:

Abstract

This paper introduces a method for reconstructing water from real video footage. Using a single input video, the proposed method produces a more informative reconstruction from a wider range of possible scenes than the current state of the art. The key is the combination of vision algorithms and physics laws. Shape from shading is used to capture the change of the water’s surface, from which a vertical velocity gradient field is calculated. Such a gradient field is used to constrain the tracking of horizontal velocities by minimizing an energy function as a weighted combination of mass-conservation and intensity-conservation. Hence the final reconstruction contains a dense velocity field that is incompressible in 3D. The proposed method is efficient and performs consistently well across water of different types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aguiar, E.D., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H., Thrun, S.: Performance capture from sparse multi-view video. In: Proceedings of ACM SIGGRAPH, vol. 27, pp. 1–10 (2008)

    Google Scholar 

  2. Atcheson, B., Ihrke, I., Heidrich, W., Tevs, A., Bradley, D., Magnor, M., Seidel, H.: Time-resolved 3d capture of non-stationary gas flows. In: Proceedings of ACM SIGGRAPH Asia, vol. 27, pp. 1–9 (2008)

    Google Scholar 

  3. Balschbach, G., Klinke, J., Jähne, B.: Multichannel shape from shading techniques for moving specular surfaces. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 170–184. Springer, Heidelberg (1998)

    Google Scholar 

  4. Ding, Y.Y., Yu, J.Y., Sturm, P.: Recovering specular surfaces using curved line images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2326–2333 (2009)

    Google Scholar 

  5. Doshi, A., Bors, A.G.: Navier-stokes formulation for modelling turbulent optical flow. In: Proceedings of the British Machine Vision Conference, pp. 1–10 (2007)

    Google Scholar 

  6. Ghosh, A., Hawkins, T., Peers, P., Frederiksen, S., Debevec, P.: Practical modeling and acquisition of layered facial reflectance. In: Proceedings of ACM SIGGRAPH Asia, vol. 27, pp. 1–10 (2008)

    Google Scholar 

  7. Héas., P., Mémin, E.: Three-dimensional motion estimation of atmospheric layers from image sequences, vol. 46, pp. 2385–2396 (2008)

    Google Scholar 

  8. Hilsenstein, V.: Surface reconstruction of water waves using thermographic stereo imaging. In: Image and Vision Computing, New Zealand, pp. 102–107 (2005)

    Google Scholar 

  9. Horn, B.K.P., Schunck, B.G.: Determing optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  10. Ihrke, I., Goldluecke, B., Magnor, M.: Reconstructing the geometry of flowing water. In: Proceedings of the International Conference on Computer Vision, pp. 1055–1060 (2005)

    Google Scholar 

  11. Li, F., Xu, L.W., Guyenne, P., Yu, J.Y.: Recovering fluid-type motions using navier-stokes potential flow. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  12. Morris, N.J., Kutulakos, K.N.: Dynamic refraction stereo. In: Proceedings of the International Conference on Computer Vision, pp. 1573–1580 (2005)

    Google Scholar 

  13. Murase, H.: Surface shape reconstruction of a nonrigid transport object using refraction and motion. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 1045–1052 (1992)

    Article  Google Scholar 

  14. Nakajima, Y., Inomata, H., Nogawa, H., Sato, Y., Tamura, S., Okazaki, K., Torii, S.: Physics-based flow estimation of fluids. Pattern Recgonition 36, 1203–1212 (2003)

    Article  Google Scholar 

  15. Papadakis, N., Héas, P., Mémin, E.: Image assimilation for motion estimation of atmospheric layers with shallow-water model. In: Proceedings of the Asia Conference on Computer Vision, pp. 864–874 (2007)

    Google Scholar 

  16. Paris, S., Chang, W., Kozhushnyan, O.I., Jarosz, W., Matusik, W., Zwicker, M., Durand, F.: Hair photobooth: geometric and photometric acquisition of real hairstyles. In: Proceedings of ACM SIGGRAPH, pp. 1–9. ACM, New York (2008)

    Google Scholar 

  17. Péteri, R., Fazekas, S., Huiskes, M.J.: Dyntex: a comprehensive database of dynamic textures. Pattern Recognition Letters (2010)

    Google Scholar 

  18. Sakaino, H.: Motion estimation method based on physical properties of waves. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  19. Shand, T., Shand, R., Bailey, D., Andrews, C.: Wave deformation in the vicinity of a long ocean outfall at wanganui, new zealand. In: Coasts and Ports Australasian Conference, pp. 173–178 (2005)

    Google Scholar 

  20. Tan, P., Fang, T., Xiao, J.X., Zhao, P., Quan, L.: Single image tree modeling. In: Proceedings of ACM SIGGRAPH, Asia, vol. 27, pp. 1–7 (2008)

    Google Scholar 

  21. Tan, P., Zeng, G., Wang, J.D., Kang, S.B., Quan, L.: Image-based tree modeling. In: Proceedings of ACM SIGGRAPH, vol. 87. ACM, New York (2007)

    Google Scholar 

  22. Tsai, P., Shah, M.: Shape from shading using linear approximation. Image and Vision Computing 12, 487–498 (1994)

    Article  Google Scholar 

  23. Wang, H.M., Liao, M., Zhang, Q., Yang, R.G., Turk, G.: Physically guided liquid surface modeling from videos. In: Proceedings of ACM SIGGRAPH, pp. 1–11 (2009)

    Google Scholar 

  24. Zhang, R., Tsai, P.S., Cryer, J.E., Shah, M.: Shape from shading: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 690–706 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pickup, D., Li, C., Cosker, D., Hall, P., Willis, P. (2011). Reconstructing Mass-Conserved Water Surfaces Using Shape from Shading and Optical Flow. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19282-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19282-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19281-4

  • Online ISBN: 978-3-642-19282-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics