Fast Depth Saliency from Stereo for Region-Based Artificial Visual Attention | SpringerLink
Skip to main content

Fast Depth Saliency from Stereo for Region-Based Artificial Visual Attention

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6474))

Abstract

Depth is an important feature channel for natural vision organisms that helps in focusing attention on important locations of the viewed scene. Artificial visual attention systems require a fast estimation of depth to construct a saliency map based upon distance from the vision system. Recent studies on depth perception in biological vision indicate that disparity is computed using object detection in the brain. The proposed method exploits these studies and determines the shift that objects go through in the stereo frames using data regarding their borders. This enables efficient creation of depth saliency map for artificial visual attention. Results of the proposed model have shown success in selecting those locations from stereo scenes that are salient for human perception in terms of depth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wolfe, J.M., Horowitz, T.S.: What attributes guide the deployment of visual attention and how do they do it? Nature Reviews. Neuroscience 5, 495–501 (2004)

    Google Scholar 

  2. Zhang, Y., Jiang, G., Yu, M., Chen, K.: Stereoscopic visual attention model for 3d video. In: Boll, S., Tian, Q., Zhang, L., Zhang, Z., Chen, Y.-P.P. (eds.) MMM 2010. LNCS, vol. 5916, pp. 314–324. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Jang, Y.M., Ban, S.W., Lee, M.: Stereo saliency map considering affective factors in a dynamic environment. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007, Part II. LNCS, vol. 4985, pp. 1055–1064. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Frintrop, S., Rome, E., Nüchter, A., Surmann, H.: A bimodal laser-based attention system. Computer Vision and Image Understanding 100(1-2), 124–151 (2005)

    Article  MATH  Google Scholar 

  5. Backus, B.T., Fleet, D.J., Parker, A.J., Heeger, D.J.: Human cortical activity correlates with stereoscopic depth perception. Journal of Neurophysiology 86, 2054–2068 (2001)

    Google Scholar 

  6. Georgieva, S., Peeters, R., Kolster, H., Todd, J.T., Orban, G.A.: The processing of three-dimensional shape from disparity in the human brain. Journal of Neuroscience 29(3), 727–742 (2009)

    Article  Google Scholar 

  7. López-Aranda, M.F., López-Téllez, J.F., Navarro-Lobato, I., Masmudi-Martín, M., Gutiérrez, A., Khan, Z.U.: Role of layer 6 of v2 visual cortex in object-recognition memory. Science 325(5936), 87–89 (2009)

    Article  Google Scholar 

  8. Fang, F., Boyaci, H., Kersten, D.: Border ownership selectivity in human early visual cortex and its modulation by attention. Journal of Neuroscience 29(2), 460–465 (2009)

    Article  Google Scholar 

  9. Nakayama, K., Shimojo, S., Silverman, G.: Stereoscopic depth: its relation to image segmentation, grouping, and the recognition of occluded objects. Perception 18(1), 55–68 (1989)

    Article  Google Scholar 

  10. Peterson, M.A.: Organization, segregation and object recognition. Intellectica 28(1), 37–53 (1999)

    Google Scholar 

  11. Mitsudo, H., Nakamizo, S., Ono, H.: Greater depth seen with phantom stereopsis is coded at the early stages of visual processing. Vision Research 45, 1365–1374 (2005)

    Article  Google Scholar 

  12. van Ee, R., Erkelens, C.: Anisotropy in werner’s binocular depth-contrast effect. Vision research 36, 2253–2262 (1996)

    Article  Google Scholar 

  13. Jost, T., Ouerhani, N., Wartburg, R.v., Müri, R., Hügli, H.: Contribution of depth to visual attention: comparison of a computer model and human. In: Early Cognitive Vision Workshop, Isle of Skye, Scotland (2004)

    Google Scholar 

  14. Tagichi, Y., Wilburn, B., Zitnick, C.L.: Stereo reconstruction with mixed pixels using adaptive over-segmentation. In: CVPR 2008, Alaska, USA, pp. 1–8. IEEE, Los Alamitos (2008)

    Google Scholar 

  15. Wanng, Z.F., Zheng, Z.G.: A region based matching algorithm using cooperative optimization. In: CVPR 2008, Alaska, USA, pp. 1–8. IEEE, Los Alamitos (2008)

    Google Scholar 

  16. Klaus, A., Sormann, M., Karner, K.: Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In: ICPR 2006, pp. 15–18 (2006)

    Google Scholar 

  17. Liu, T., Zhang, P., Luo, L.: Dense stereo correspondence with contrast context histogram, segmentation-based two-pass aggregation and occlusion handling. In: Wada, T., Huang, F., Lin, S. (eds.) PSIVT 2009. LNCS, vol. 5414, pp. 449–461. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Tombari, F., Mattocia, S., Stefano, L.D.: Segmentation-based adaptive support for accurate stereo correspondence. In: Mery, D., Rueda, L. (eds.) PSIVT 2007. LNCS, vol. 4872, pp. 427–438. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Brockers, R., Hund, M., Mertsching, B.: A fast cost relaxation stereo algorithm with occlusion detection for mobile robot applications. In: VMV, pp. 47–53 (2004)

    Google Scholar 

  20. Brockers, R., Hund, M., Mertsching, B.: Stereo matching with occlusion detection using cost relaxation. In: ICIP, vol. (3), pp. 389–392 (2005)

    Google Scholar 

  21. Aziz, M.Z., Stemmer, R., Mertsching, B.: Region-based depth feature map for visual attention in autonomous mobile systems. In: AMS 2005, Stuttgart - Germany, Informatic Actuell, pp. 89–95. Springer, Heidelberg (2005)

    Google Scholar 

  22. Shafik, M.S.E.N., Mertsching, B.: Real-time scan-line segment based stereo vision for the estimation of biologically motivated classifier cells. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS, vol. 5803, pp. 89–96. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision 47, 7–42 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aziz, M.Z., Mertsching, B. (2010). Fast Depth Saliency from Stereo for Region-Based Artificial Visual Attention. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2010. Lecture Notes in Computer Science, vol 6474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17688-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17688-3_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17687-6

  • Online ISBN: 978-3-642-17688-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics