Region Covariance Matrices for Object Tracking in Quasi-Monte Carlo Filter | SpringerLink
Skip to main content

Region Covariance Matrices for Object Tracking in Quasi-Monte Carlo Filter

  • Conference paper
Signal Processing and Multimedia (MulGraB 2010, SIP 2010)

Abstract

Region covariance matrices (RCMs), categorized as a matrix-form feature in a low dimension, fuse multiple different image features which might be correlated. The region covariance matrices-based trackers are robust and versatile with a modest computational cost. In this paper, under the Bayesian inference framework, a region covariance matrices-based quasi-Monte Carlo filter tracker is proposed. The RCMs are used to model target appearances. The dissimilarity metric of the RCMs are measured on Riemannian manifolds. Based on the current object location and the prior knowledge, the possible locations of the object candidates in the next frame are predicted by combine both sequential quasi-Monte Carlo (SQMC) and a given importance sampling (IS) techniques. Experiments performed on different type of image sequence show our approach is robust and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based Object Tracking. IEEE Trans. Pattern Anal. Machine Intell. 25, 564–577 (2003)

    Article  Google Scholar 

  2. Sanjeev Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Trans. Signal Process. 50, 174–188 (2002)

    Article  Google Scholar 

  3. Perez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based Probabilistic Tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 661–675. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Maggio, E., Cavallaro, A.: Hybrid Particle Filter and Mean Shift Tracker with Adaptive Transition Model. In: IEEE Conf. Signal Processing Society International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2005), pp. 221–224. IEEE Press, New York (2005)

    Chapter  Google Scholar 

  5. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: IEEE Conf. Computer Vision and Pattern Recognition (CVPR 2005), pp. 886–893. IEEE Press, New York (2005)

    Google Scholar 

  6. Tuzel, O., Porikli, F., Meer, P.: Region Covariance: A Fast Descriptor for Detection and Classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 589–600. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Tuzel, O., Porikli, F., Meer, P.: Pedestrian Detection via Classification on Riemannian Manifolds. IEEE Trans. Pattern Anal. Machine Intell. 30, 1713–1727 (2008)

    Article  Google Scholar 

  8. Guo, D., Wang, X.: Quasi-Monte Carlo filtering in nonlinear dynamic systems. IEEE Tans. Signal Proc. 54, 2087–2098 (2006)

    Article  Google Scholar 

  9. Isard, M., Blake, A.: CONDENSATION-Conditional Density Propagation for Visual Tracking. Int. J. Comput. Vis. 29, 5–28 (1998)

    Article  Google Scholar 

  10. L’Ecuye, P., Lemieux, C.: Recent Advance in Randomized Quasi-Monte Carlo Methods. Kluwer Academic, Boston (2000)

    Google Scholar 

  11. Mathias, F., Patrick, D., Frederic, L.: Quasi Monte Carlo Partitioned Filtering for Visual Human Motion Capture. In: 16th IEEE Conf. Image Processing (ICIP 2009), pp. 2553–2556. IEEE Press, New York (2009)

    Google Scholar 

  12. Wu, Y., Wu, B., Liu, J., et al.: Probabilistic Tracking on Riemannian Manifolds. In: 19th International Conf. Pattern Recognition (ICPR 2008). IEEE Press, New York (2008)

    Google Scholar 

  13. Palaio, H., Batista, J.: Multi-object Tracking using An Adaptive Transition Model Particle Filter with Region Covariance Data Association. In: 19th International Conf. Pattern Recognition (ICPR 2008). IEEE Press, New York (2008)

    Google Scholar 

  14. Vermaak, J., Lawrence, N.D., Perez, P.: Variational inference for visual tracking. In: IEEE Conf. Computer Vision and Pattern Recognition (CVPR 2003), pp. 773–780. IEEE Press, New York (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ding, X., Xu, L., Wang, X., Lv, G. (2010). Region Covariance Matrices for Object Tracking in Quasi-Monte Carlo Filter. In: Kim, Th., Pal, S.K., Grosky, W.I., Pissinou, N., Shih, T.K., Ślęzak, D. (eds) Signal Processing and Multimedia. MulGraB SIP 2010 2010. Communications in Computer and Information Science, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17641-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17641-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17640-1

  • Online ISBN: 978-3-642-17641-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics