Identification of Liquid State of Scrap in Electric Arc Furnace by the Use of Computational Intelligence Methods | SpringerLink
Skip to main content

Identification of Liquid State of Scrap in Electric Arc Furnace by the Use of Computational Intelligence Methods

  • Conference paper
Neural Information Processing. Models and Applications (ICONIP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6444))

Included in the following conference series:

  • 2686 Accesses

Abstract

A constant aspiration to optimize electric arc steelmaking process causes an increase of the use of advanced analytical methods for the process support. Optimization of the production processes lead to real benefits, which are, for example, lower costs of production. More often computational intelligence methods are used for this purpose. In this paper authors present three methods used for identification of liquid state of scrap in electric arc furnace using analysis of signals of the current of furnace electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wieczorek, T.: Intelligent control of the electric-arc steelmaking process using artificial neural networks. Computer Methods in Material Science 6(1), 9–14 (2006)

    MathSciNet  Google Scholar 

  2. Wieczorek, T., Pilarczyk, M.: Classification of steel scrap in the EAF process using image analysis methods. Archives of Metallurgy and Materials 53(2), 613–618 (2008)

    Google Scholar 

  3. Millman, M.S., Nyssen, P., Mathy, C., Tolazzi, D., Londero, L., Candusso, C., Baumert, J.C., Brimmeyer, M., Gualtieri, D., Rigoni, D.: Direct observation of the melting process in an EAF with a closed slag door. Archives of Metallurgy and Materials 53(2), 463–468 (2008)

    Google Scholar 

  4. Kendall, M., Thys, M., Horrex, A., Verhoeven, J.P.: A window into the electric arc furnace, a continuous temperature sensor measuring the complete furnace cycle. Archives of Metallurgy and Materials 53(2), 451–454 (2008)

    Google Scholar 

  5. Wieczorek, T., Blachnik, M., Mączka, K.: Building model for time reduction of steel scrap meltdown in the electric arc furnace. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 1149–1159. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Wieczorek, T., Mączka, K.: Modeling of the AC-EAF process using computational intelligence methods. Electrotechnical Review 11, 184–188 (2008)

    Google Scholar 

  7. Blachnik, M., Mązka, K., Wieczorek, T.: A model for temperature prediction of melted steel in the electric arc furnace (EAF). LNCS, vol. 4839, pp. 371–378. Springer, Heidelberg (2010)

    Google Scholar 

  8. Jones, A.J.: New tools in non-linear modelling and prediction. Computational Man-agement Science 1, 109–149 (2004)

    MATH  Google Scholar 

  9. Liitiäinen, E., Corona, F., Lendasse, A.: Nearest Neighbor Distributions and Noise Variance Estimation. In: ESANN, Belgium (2007)

    Google Scholar 

  10. Schölkopf, B., Burges, C., Smola, A.: Advances in Kernel Methods: Support Vector Machines. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  11. Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufman, San Francisco (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blachnik, M., Wieczorek, T., Mączka, K., Kopeć, G. (2010). Identification of Liquid State of Scrap in Electric Arc Furnace by the Use of Computational Intelligence Methods. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds) Neural Information Processing. Models and Applications. ICONIP 2010. Lecture Notes in Computer Science, vol 6444. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17534-3_86

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17534-3_86

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17533-6

  • Online ISBN: 978-3-642-17534-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics