Abstract
A constant aspiration to optimize electric arc steelmaking process causes an increase of the use of advanced analytical methods for the process support. Optimization of the production processes lead to real benefits, which are, for example, lower costs of production. More often computational intelligence methods are used for this purpose. In this paper authors present three methods used for identification of liquid state of scrap in electric arc furnace using analysis of signals of the current of furnace electrodes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wieczorek, T.: Intelligent control of the electric-arc steelmaking process using artificial neural networks. Computer Methods in Material Science 6(1), 9–14 (2006)
Wieczorek, T., Pilarczyk, M.: Classification of steel scrap in the EAF process using image analysis methods. Archives of Metallurgy and Materials 53(2), 613–618 (2008)
Millman, M.S., Nyssen, P., Mathy, C., Tolazzi, D., Londero, L., Candusso, C., Baumert, J.C., Brimmeyer, M., Gualtieri, D., Rigoni, D.: Direct observation of the melting process in an EAF with a closed slag door. Archives of Metallurgy and Materials 53(2), 463–468 (2008)
Kendall, M., Thys, M., Horrex, A., Verhoeven, J.P.: A window into the electric arc furnace, a continuous temperature sensor measuring the complete furnace cycle. Archives of Metallurgy and Materials 53(2), 451–454 (2008)
Wieczorek, T., Blachnik, M., Mączka, K.: Building model for time reduction of steel scrap meltdown in the electric arc furnace. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 1149–1159. Springer, Heidelberg (2008)
Wieczorek, T., Mączka, K.: Modeling of the AC-EAF process using computational intelligence methods. Electrotechnical Review 11, 184–188 (2008)
Blachnik, M., Mązka, K., Wieczorek, T.: A model for temperature prediction of melted steel in the electric arc furnace (EAF). LNCS, vol. 4839, pp. 371–378. Springer, Heidelberg (2010)
Jones, A.J.: New tools in non-linear modelling and prediction. Computational Man-agement Science 1, 109–149 (2004)
Liitiäinen, E., Corona, F., Lendasse, A.: Nearest Neighbor Distributions and Noise Variance Estimation. In: ESANN, Belgium (2007)
Schölkopf, B., Burges, C., Smola, A.: Advances in Kernel Methods: Support Vector Machines. MIT Press, Cambridge (1998)
Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufman, San Francisco (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Blachnik, M., Wieczorek, T., Mączka, K., Kopeć, G. (2010). Identification of Liquid State of Scrap in Electric Arc Furnace by the Use of Computational Intelligence Methods. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds) Neural Information Processing. Models and Applications. ICONIP 2010. Lecture Notes in Computer Science, vol 6444. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17534-3_86
Download citation
DOI: https://doi.org/10.1007/978-3-642-17534-3_86
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17533-6
Online ISBN: 978-3-642-17534-3
eBook Packages: Computer ScienceComputer Science (R0)