Rotation Invariant Categorization of Visual Objects Using Radon Transform and Self-Organizing Modules | SpringerLink
Skip to main content

Rotation Invariant Categorization of Visual Objects Using Radon Transform and Self-Organizing Modules

  • Conference paper
Neural Information Processing. Models and Applications (ICONIP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6444))

Included in the following conference series:

Abstract

The Radon transform in combination with self-organizing maps is used to build the rotation invariant systems for categorization of visual objects. The first system has one SOM per the Radon transform direction. The outputs from these directional SOMs that represent positions of the winners and related post-synaptic activities, form the input to the final categorizing SOM. Such a network delivers robust rotation invariant categorization of images rotated by angles up to around 12o. In the second network the angular Radon transform vectors are combined together and form the input to the categorizing SOM. This network can correctly categorized visual stimuli rotated by up to 30o. The rotation invariance can be improved by increasing the number of Radon transform angle, which has been equal to six in our initial experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Magli, E., Presti, L.L., Olmo, G.: A pattern detection and compression algorithm based on the joint wavelet and Radon transform. In: Proc. IEEE 13th Int. Conf. Dig. Sig. Proc., pp. 559–562 (1997)

    Google Scholar 

  2. Warrick, A., Delaney, P.A.: Detection of linear features using a localized Radon transform with a wavelet filter. In: Proc. ICASSP, pp. 2769–2772 (1997)

    Google Scholar 

  3. Jafari-Khouzani, K., Soltanian-Zadeh, H.: Rotation-invariant multiresolution texture analysis using Radon and wavelet transforms. IEEE Trans. Img. Proc. 14(6), 783–795 (2005)

    Article  MathSciNet  Google Scholar 

  4. Yu, G., Cao, W., Li, Z.: Rotation and scale invariant for texture analysis based on Radon transform and wavelet transform. In: Proc. 3rd ICPCA, pp. 704–708 (2008)

    Google Scholar 

  5. Yao, W., Pun, C.M.: Invariant shape representation by Radon and wavelet transforms for complex inner shapes. In: Proc. IEEE Int. Conf. Inform. Autom., pp. 1144–1149 (2009)

    Google Scholar 

  6. Xiao, S.S., Wu, Y.X.: Rotation-invariant texture analysis using Radon and Fourier transforms. J. Phys.: Conf. Ser. 48, 1459–1464 (2007)

    Google Scholar 

  7. Chen, G., Kégl, B.: Feature extraction using Radon, wavelet and Fourier transform. In: Proc. IEEE Int. Conf. Syst. Man and Cybernetics, pp. 1020–1025 (2007)

    Google Scholar 

  8. Liu, G., Lin, Z., Yu, Y.: Radon representation-based feature descriptor for texture classification. IEEE Trans. Img. Proc. 18(5), 921–928 (2009)

    Article  MathSciNet  Google Scholar 

  9. Miciak, M.: Character recognition using Radon transformation and principal component analysis in postal applications. In: Proc. Int. Multiconf. Comp. Sci. Info. Tech., pp. 495–500 (2008)

    Google Scholar 

  10. Hejazi, M., Shevlyakov, G., Ho, Y.S.: Modified discrete Radon transforms and their application to rotation-invariant image analysis. In: Proc. IEEE Workshop Mult. Sig. Proc., pp. 429–434 (2006)

    Google Scholar 

  11. Hjouj, F., Kammler, D.W.: Identification of reflected, scaled, translated, and rotated objects from their Radon projections. IEEE Trans. Img. Proc. 17(3), 301–310 (2008)

    Article  MathSciNet  Google Scholar 

  12. Kohonen, T.: Self-Organising Maps, 3rd edn. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  13. Papliński, A.P., Gustafsson, L., Mount, W.M.: A model of binding concepts to spoken names. In: Proc. 17th Int. Conf. Neural Inf. Proc., Sydney (submitted, 2010)

    Google Scholar 

  14. Chou, S., Papliński, A.P., Gustafsson, L.: Speaker-dependent bimodal integration of Chinese phonemes and letters using multimodal self-organizing networks. In: Proc. Int. Joint Conf. Neural Networks, Orlando, Florida (2007)

    Google Scholar 

  15. Papliński, A.P., Gustafsson, L.: Feedback in multimodal self-organizing networks enhances perception of corrupted stimuli. In: Sattar, A., Kang, B.-h. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 19–28. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Papliński, A.P. (2010). Rotation Invariant Categorization of Visual Objects Using Radon Transform and Self-Organizing Modules. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds) Neural Information Processing. Models and Applications. ICONIP 2010. Lecture Notes in Computer Science, vol 6444. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17534-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17534-3_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17533-6

  • Online ISBN: 978-3-642-17534-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics