Abstract
The Radon transform in combination with self-organizing maps is used to build the rotation invariant systems for categorization of visual objects. The first system has one SOM per the Radon transform direction. The outputs from these directional SOMs that represent positions of the winners and related post-synaptic activities, form the input to the final categorizing SOM. Such a network delivers robust rotation invariant categorization of images rotated by angles up to around 12o. In the second network the angular Radon transform vectors are combined together and form the input to the categorizing SOM. This network can correctly categorized visual stimuli rotated by up to 30o. The rotation invariance can be improved by increasing the number of Radon transform angle, which has been equal to six in our initial experiments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Magli, E., Presti, L.L., Olmo, G.: A pattern detection and compression algorithm based on the joint wavelet and Radon transform. In: Proc. IEEE 13th Int. Conf. Dig. Sig. Proc., pp. 559–562 (1997)
Warrick, A., Delaney, P.A.: Detection of linear features using a localized Radon transform with a wavelet filter. In: Proc. ICASSP, pp. 2769–2772 (1997)
Jafari-Khouzani, K., Soltanian-Zadeh, H.: Rotation-invariant multiresolution texture analysis using Radon and wavelet transforms. IEEE Trans. Img. Proc. 14(6), 783–795 (2005)
Yu, G., Cao, W., Li, Z.: Rotation and scale invariant for texture analysis based on Radon transform and wavelet transform. In: Proc. 3rd ICPCA, pp. 704–708 (2008)
Yao, W., Pun, C.M.: Invariant shape representation by Radon and wavelet transforms for complex inner shapes. In: Proc. IEEE Int. Conf. Inform. Autom., pp. 1144–1149 (2009)
Xiao, S.S., Wu, Y.X.: Rotation-invariant texture analysis using Radon and Fourier transforms. J. Phys.: Conf. Ser. 48, 1459–1464 (2007)
Chen, G., Kégl, B.: Feature extraction using Radon, wavelet and Fourier transform. In: Proc. IEEE Int. Conf. Syst. Man and Cybernetics, pp. 1020–1025 (2007)
Liu, G., Lin, Z., Yu, Y.: Radon representation-based feature descriptor for texture classification. IEEE Trans. Img. Proc. 18(5), 921–928 (2009)
Miciak, M.: Character recognition using Radon transformation and principal component analysis in postal applications. In: Proc. Int. Multiconf. Comp. Sci. Info. Tech., pp. 495–500 (2008)
Hejazi, M., Shevlyakov, G., Ho, Y.S.: Modified discrete Radon transforms and their application to rotation-invariant image analysis. In: Proc. IEEE Workshop Mult. Sig. Proc., pp. 429–434 (2006)
Hjouj, F., Kammler, D.W.: Identification of reflected, scaled, translated, and rotated objects from their Radon projections. IEEE Trans. Img. Proc. 17(3), 301–310 (2008)
Kohonen, T.: Self-Organising Maps, 3rd edn. Springer, Berlin (2001)
Papliński, A.P., Gustafsson, L., Mount, W.M.: A model of binding concepts to spoken names. In: Proc. 17th Int. Conf. Neural Inf. Proc., Sydney (submitted, 2010)
Chou, S., Papliński, A.P., Gustafsson, L.: Speaker-dependent bimodal integration of Chinese phonemes and letters using multimodal self-organizing networks. In: Proc. Int. Joint Conf. Neural Networks, Orlando, Florida (2007)
Papliński, A.P., Gustafsson, L.: Feedback in multimodal self-organizing networks enhances perception of corrupted stimuli. In: Sattar, A., Kang, B.-h. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 19–28. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Papliński, A.P. (2010). Rotation Invariant Categorization of Visual Objects Using Radon Transform and Self-Organizing Modules. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds) Neural Information Processing. Models and Applications. ICONIP 2010. Lecture Notes in Computer Science, vol 6444. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17534-3_44
Download citation
DOI: https://doi.org/10.1007/978-3-642-17534-3_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17533-6
Online ISBN: 978-3-642-17534-3
eBook Packages: Computer ScienceComputer Science (R0)