Frequent Pattern Trend Analysis in Social Networks | SpringerLink
Skip to main content

Frequent Pattern Trend Analysis in Social Networks

  • Conference paper
Advanced Data Mining and Applications (ADMA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6440))

Included in the following conference series:

Abstract

This paper describes an approach to identifying and comparing frequent pattern trends in social networks. A frequent pattern trend is defined as a sequence of time-stamped occurrence (support) values for specific frequent patterns that exist in the data. The trends are generated according to epochs. Therefore, trend changes across a sequence epochs can be identified. In many cases, a great many trends are identified and difficult to interpret the result. With a combination of constraints, placed on the frequent patterns, and clustering and cluster analysis techniques, it is argued that analysis of the result is enhanced. Clustering technique uses a Self Organising Map approach to produce a sequence of maps, one per epoch. These maps can then be compared and the movement of trends identified. This Frequent Pattern Trend Mining framework has been evaluated using two non-standard types of social networks, the cattle movement network and the insurance quote network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cottrell, M., Rousset, P.: A powerful Tool for Analyzing and Representing Multidimensional Quantitative and Qualitative Data. In: Cabestany, J., Mira, J., Moreno-Díaz, R. (eds.) IWANN 1997. LNCS, vol. 1240, pp. 861–871. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  2. Kohonen, T.: The Self Organizing Maps. Neurocomputing 21(1-3), 1–6 (1998)

    Article  MATH  Google Scholar 

  3. Kohonen, T.: The Self Organizing Maps, 3rd edn. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  4. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Databases. In: Proceedings of ACM SIGMOD Conference, pp. 207–216 (1993)

    Google Scholar 

  5. Han, J., Pei, J., Yiwen, Y.: Mining Frequent Patterns Without Candidate Generation. In: Proceedings ACM-SIGMOD International Conference on Management of Data, pp. 1–12. ACM Press, New York (2000)

    Google Scholar 

  6. Coenen, F.: The LUCS-KDD TFP Association Rule Mining Algorithm, Department of Computer Science, The University of Liverpool, UK (2004)

    Google Scholar 

  7. Coenen, F., Leng, P., Ahmed, S.: Data Structures for association Rule Mining: T-trees and P-trees. IEEE Transactions on Data and Knowledge Engineering 16(6), 774–778 (2004a)

    Article  Google Scholar 

  8. Richardson, M., Domingos, P.: Mining Knowledge Sharing Sites for Viral Marketing. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 61–70 (2002)

    Google Scholar 

  9. Choudhury, M.D., Sundaram, H., John, A., Seligmann, D.D.: Can blog communication dynamics be correlated with stock market activity? In: Proceedings of the Nineteenth ACM Conference on Hypertext and Hypermedia, pp. 55–60 (2008)

    Google Scholar 

  10. Gloor, P.A., Krauss, J.S., Nann, S., Fischbach, K., Schoder, D.: Web Science 2.0: Identifying Trends Through Semantic Social Network Analysis. Social Science Research Network (2008)

    Google Scholar 

  11. Wang, J., Delabie, J., Aasheim, H.C., Smel, E., Myklebost, O.: Clustering of the SOM easily reveals distinct gene expression patterns: results of a reanalysis of lymphoma study. BMC Bioinformatics, 3(36) (2002)

    Google Scholar 

  12. Yan, S., Abidi, S.R., Artes, P.H.: Analyzing Sub-Classifications of Glaucoma via SOM Based Clustering of Optic Nerve Images. In: Proceedings of MIE 2005 - The XIXth International Congress of the European Federation for Medical Informatics, pp. 483–488 (2005)

    Google Scholar 

  13. Coenen, F.P., Goulbourne, G., Leng, P.: Computing Association Rules Using Partial Totals. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 54–66. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Kohonen, T., Oja, E., Simula, O., Visa, A., Kangas, J.: Engineering applications of the Self-Organizing Map. Proceedings of the IEEE 84(10), 1358–1384 (1996)

    Article  Google Scholar 

  15. Toivonen, H.: Sampling Large Databases for Association Rules. In: Proceedings of the 22th International Conference on Very Large Data Bases, pp. 134–145 (1996)

    Google Scholar 

  16. Dong, G., Li, J.: Efficient Mining of Emerging Patterns: Discovering Trends and Differences. In: Proceeding of Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 43–52 (1999)

    Google Scholar 

  17. Yu, L., Chung, F., Chan, S., Yuen, S.: Using Emerging Pattern Based Projected Clustering and Gene Expression Data for Cancer Detection. In: 2nd Asia-Pacific Bioinformatics Conference, New Zealand (2004)

    Google Scholar 

  18. Somaraki, V., Broadbent, D., Coenen, F., Harding, S.: Finding temporal patterns in noisy longitudinal data: A study in diabetic retinopathy. In: Perner, P. (ed.) ICDM 2010. LNCS, vol. 6171, pp. 418–431. Springer, Heidelberg (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nohuddin, P.N.E., Christley, R., Coenen, F., Patel, Y., Setzkorn, C., Williams, S. (2010). Frequent Pattern Trend Analysis in Social Networks. In: Cao, L., Feng, Y., Zhong, J. (eds) Advanced Data Mining and Applications. ADMA 2010. Lecture Notes in Computer Science(), vol 6440. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17316-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17316-5_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17315-8

  • Online ISBN: 978-3-642-17316-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics