Abstract
This paper describes an approach to identifying and comparing frequent pattern trends in social networks. A frequent pattern trend is defined as a sequence of time-stamped occurrence (support) values for specific frequent patterns that exist in the data. The trends are generated according to epochs. Therefore, trend changes across a sequence epochs can be identified. In many cases, a great many trends are identified and difficult to interpret the result. With a combination of constraints, placed on the frequent patterns, and clustering and cluster analysis techniques, it is argued that analysis of the result is enhanced. Clustering technique uses a Self Organising Map approach to produce a sequence of maps, one per epoch. These maps can then be compared and the movement of trends identified. This Frequent Pattern Trend Mining framework has been evaluated using two non-standard types of social networks, the cattle movement network and the insurance quote network.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cottrell, M., Rousset, P.: A powerful Tool for Analyzing and Representing Multidimensional Quantitative and Qualitative Data. In: Cabestany, J., Mira, J., Moreno-Díaz, R. (eds.) IWANN 1997. LNCS, vol. 1240, pp. 861–871. Springer, Heidelberg (1997)
Kohonen, T.: The Self Organizing Maps. Neurocomputing 21(1-3), 1–6 (1998)
Kohonen, T.: The Self Organizing Maps, 3rd edn. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (2001)
Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Databases. In: Proceedings of ACM SIGMOD Conference, pp. 207–216 (1993)
Han, J., Pei, J., Yiwen, Y.: Mining Frequent Patterns Without Candidate Generation. In: Proceedings ACM-SIGMOD International Conference on Management of Data, pp. 1–12. ACM Press, New York (2000)
Coenen, F.: The LUCS-KDD TFP Association Rule Mining Algorithm, Department of Computer Science, The University of Liverpool, UK (2004)
Coenen, F., Leng, P., Ahmed, S.: Data Structures for association Rule Mining: T-trees and P-trees. IEEE Transactions on Data and Knowledge Engineering 16(6), 774–778 (2004a)
Richardson, M., Domingos, P.: Mining Knowledge Sharing Sites for Viral Marketing. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 61–70 (2002)
Choudhury, M.D., Sundaram, H., John, A., Seligmann, D.D.: Can blog communication dynamics be correlated with stock market activity? In: Proceedings of the Nineteenth ACM Conference on Hypertext and Hypermedia, pp. 55–60 (2008)
Gloor, P.A., Krauss, J.S., Nann, S., Fischbach, K., Schoder, D.: Web Science 2.0: Identifying Trends Through Semantic Social Network Analysis. Social Science Research Network (2008)
Wang, J., Delabie, J., Aasheim, H.C., Smel, E., Myklebost, O.: Clustering of the SOM easily reveals distinct gene expression patterns: results of a reanalysis of lymphoma study. BMC Bioinformatics, 3(36) (2002)
Yan, S., Abidi, S.R., Artes, P.H.: Analyzing Sub-Classifications of Glaucoma via SOM Based Clustering of Optic Nerve Images. In: Proceedings of MIE 2005 - The XIXth International Congress of the European Federation for Medical Informatics, pp. 483–488 (2005)
Coenen, F.P., Goulbourne, G., Leng, P.: Computing Association Rules Using Partial Totals. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 54–66. Springer, Heidelberg (2001)
Kohonen, T., Oja, E., Simula, O., Visa, A., Kangas, J.: Engineering applications of the Self-Organizing Map. Proceedings of the IEEE 84(10), 1358–1384 (1996)
Toivonen, H.: Sampling Large Databases for Association Rules. In: Proceedings of the 22th International Conference on Very Large Data Bases, pp. 134–145 (1996)
Dong, G., Li, J.: Efficient Mining of Emerging Patterns: Discovering Trends and Differences. In: Proceeding of Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 43–52 (1999)
Yu, L., Chung, F., Chan, S., Yuen, S.: Using Emerging Pattern Based Projected Clustering and Gene Expression Data for Cancer Detection. In: 2nd Asia-Pacific Bioinformatics Conference, New Zealand (2004)
Somaraki, V., Broadbent, D., Coenen, F., Harding, S.: Finding temporal patterns in noisy longitudinal data: A study in diabetic retinopathy. In: Perner, P. (ed.) ICDM 2010. LNCS, vol. 6171, pp. 418–431. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nohuddin, P.N.E., Christley, R., Coenen, F., Patel, Y., Setzkorn, C., Williams, S. (2010). Frequent Pattern Trend Analysis in Social Networks. In: Cao, L., Feng, Y., Zhong, J. (eds) Advanced Data Mining and Applications. ADMA 2010. Lecture Notes in Computer Science(), vol 6440. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17316-5_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-17316-5_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17315-8
Online ISBN: 978-3-642-17316-5
eBook Packages: Computer ScienceComputer Science (R0)