A Parallel Algorithm for Solving Large Convex Minimax Problems | SpringerLink
Skip to main content

A Parallel Algorithm for Solving Large Convex Minimax Problems

  • Conference paper
Simulated Evolution and Learning (SEAL 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6457))

Included in the following conference series:

  • 2795 Accesses

Abstract

We consider unconstrained minimax problem where the objective function is the maximum of a finite number of smooth convex functions. We present an iterative method to compute the optimal solution for the unconstrained convex finite minimax problem. The algorithm developed estimates the direction of steepest-descent rapidly and using Armijo’s condition proceeds towards the solution. Owing to the highly parallel nature of the algorithm, it is highly suitable for large minimax problems. Algorithm is implemented on Nvidia Tesla C1060 graphics card using CUDA and numerical comparisons with RGA & CFSQP are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Xu, S.: Smoothing Method for Minimax Problems. Computational Optimization and Applications 20, 267–279 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Parpas, P., Rustem, B.: An Algorithm for the Global Optimization of a Class of Continuous Minimax Problems. Journal of Optimization Theory and Applications 141, 461–473 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Pillo, G.D., Grippo, L., Lucidi, S.: A Smooth Method for the Finite Minimax Problem. Math. Program. 60, 187–214 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Rustem, B., Zakovic, S., Parpas, P.: An Interior Point Algorithm for Continuous Minimax. Journal of Optimization Theory and Applications 136, 87–103 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Polak, E., Womersley, R.S., Yin, H.X.: An Algorithm Based on Active Sets and Smoothing for Discretized Semi-Infinite Minimax Problems. Journal of Optimization Theory and Applications 138, 311–328 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Sun, W.: Non-Monotone Trust Region Method for Solving Optimization Problem. Applied Mathematics and Computation 156, 159–174 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Charalamous, C., Conn, A.: An Efficient Method to Solve the Minimax Problem Directly. SIAM J. Numer. Anal. 15, 162–187 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, R.: Solution of Minimax Problem using Equivalent Differentiable Functions. Comp. and Maths. with Appls. 11, 1165–1169 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gaudioso, M., Monaco, M.F.: A Bundle Type Approach to the Unconstrained Minimization of Convex Non-Smooth Functions. Mathematical Programming 23, 216–226 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhua, Z., Cai, X., Jian, J.: An Improved SQP Algorithm for Solving Minimax Problems. Applied Mathematical Letters 22, 464–469 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hiriart-Urruty, J.B., Lemarechal, C.: Convex Analysis and Minimization Algorithms I: Fundamentals. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  12. Vardi, A.: New Minimax Algorithm. Journal of Optimization Theory and Applications (1992)

    Google Scholar 

  13. Wang, F., Zhang, K.: A Hybrid Algorithm for Nonlinear Minimax Problems. Annals of Operation Research (2008)

    Google Scholar 

  14. Goldberg, D.E.: Genetic Algorithms for Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  15. Deb, K., et al.: A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization. Evol. Comput. 10(4), 371–395 (2002)

    Article  Google Scholar 

  16. Hansen, N., Muller, S., Koumoutsakos, P.: Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation 11(1), 1–18 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arora, R., Upadhyay, U., Tulshyan, R., Dutta, J. (2010). A Parallel Algorithm for Solving Large Convex Minimax Problems. In: Deb, K., et al. Simulated Evolution and Learning. SEAL 2010. Lecture Notes in Computer Science, vol 6457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17298-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17298-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17297-7

  • Online ISBN: 978-3-642-17298-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics