Abstract
A number of mutation operators have been developed in evolutionary programming, such as Gaussian mutations, Cauchy mutations, Lévy mutations, and some mixed mutations. Many results have been obtained only on comparisons of performance among different mutations. In stead of mearly measuring the performance, this paper discusses how to examine the behaviors of Gaussian mutations and Cauchy mutations based on nine measurements including five measurements from fitness distributions, one measurement on survival rate, and the other three measurements on mutation step sizes. The relationships among these nine measurements are further explored.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fogel, D.B.: System Identification Through Simulated Evolution: A Machine Learning Approach to Modeling. Ginn Press, Needham Heights (1991)
Fogel, D.B.: Evolutionary Computation: Towards a New Philosophy of Machine Intelligence. IEEE Press, New York (1995)
Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation 3(2), 82–102 (1999)
Lee, C.Y., Yao, X.: Evolutionary programming using the mutations based on the Lévy probability distribution. IEEE Transactions on Evolutionary Computation 8(1), 1–13 (2004)
Wang, H., Zeng, S., Liu, Y., Wang, W., Shi, H.: Rediversification based particle swarm algorithm with Cauchy mutation. In: Kang, L., Liu, Y., Zeng, S. (eds.) ISICA 2007. LNCS, vol. 4683, pp. 362–371. Springer, Heidelberg (2007)
Li, C., Liu, Y., Zhou, A., Kang, L., Wang, H.: A fast particle swarm optimization algorithm with Cauchy mutation and Natural Selection Strategy. In: Kang, L., Liu, Y., Zeng, S. (eds.) ISICA 2007. LNCS, vol. 4683, pp. 334–343. Springer, Heidelberg (2007)
Wang, H., Liu, Y., Li, C., Zeng, S.: A hybrid particle swarm algorithm with Cauchy mutation. In: Proceedings of 2007 IEEE Swarm Intelligence Symposium, pp. 356–361. IEEE Press, Los Alamitos (2007)
Liu, Y., Yao, X.: How to control search step size in fast evolutionary programming. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), pp. 652–656. IEEE Press, Los Alamitos (2002)
Yao, X., Lin, G., Liu, Y.: An analysis of evolutionary algorithms based on neighbourhood and step sizes. In: Angeline, P.J., McDonnell, J.R., Reynolds, R.G., Eberhart, R. (eds.) EP 1997. LNCS, vol. 1213, pp. 297–307. Springer, Heidelberg (1997)
Törn, A., Žilinskas, A. (eds.): Global Optimization. LNCS, vol. 350. Springer, Heidelberg (1989)
Bäck, T., Schwefel, H.-P.: An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation 1(1), 1–23 (1993)
Feller, W.: An Introduction to Probability Theory and Its Applications, 2nd edn., vol. 2. John Wiley & Sons, Inc, Chichester (1971)
Liu, Y.: Correlation between mutations and self-adaptation in evolutionary programming. In: Kang, L., Cai, Z., Yan, X., Liu, Y. (eds.) ISICA 2008. LNCS, vol. 5370, pp. 58–66. Springer, Heidelberg (2008)
Schwefel, H.-P.: Evolution and Optimum Seeking. John Wiley & Sons, New York (1995)
Liu, Y.: Operator adaptation in evolutionary programming. In: Kang, L., Liu, Y., Zeng, S. (eds.) ISICA 2007. LNCS, vol. 4683, pp. 90–99. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, Y. (2010). Measurements in Fast Evolutionary Programming. In: Cai, Z., Tong, H., Kang, Z., Liu, Y. (eds) Computational Intelligence and Intelligent Systems. ISICA 2010. Communications in Computer and Information Science, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16388-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-16388-3_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16387-6
Online ISBN: 978-3-642-16388-3
eBook Packages: Computer ScienceComputer Science (R0)