Measurements in Fast Evolutionary Programming | SpringerLink
Skip to main content

Measurements in Fast Evolutionary Programming

  • Conference paper
Computational Intelligence and Intelligent Systems (ISICA 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 107))

Included in the following conference series:

  • 766 Accesses

Abstract

A number of mutation operators have been developed in evolutionary programming, such as Gaussian mutations, Cauchy mutations, Lévy mutations, and some mixed mutations. Many results have been obtained only on comparisons of performance among different mutations. In stead of mearly measuring the performance, this paper discusses how to examine the behaviors of Gaussian mutations and Cauchy mutations based on nine measurements including five measurements from fitness distributions, one measurement on survival rate, and the other three measurements on mutation step sizes. The relationships among these nine measurements are further explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fogel, D.B.: System Identification Through Simulated Evolution: A Machine Learning Approach to Modeling. Ginn Press, Needham Heights (1991)

    Google Scholar 

  2. Fogel, D.B.: Evolutionary Computation: Towards a New Philosophy of Machine Intelligence. IEEE Press, New York (1995)

    MATH  Google Scholar 

  3. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation 3(2), 82–102 (1999)

    Article  Google Scholar 

  4. Lee, C.Y., Yao, X.: Evolutionary programming using the mutations based on the Lévy probability distribution. IEEE Transactions on Evolutionary Computation 8(1), 1–13 (2004)

    Article  Google Scholar 

  5. Wang, H., Zeng, S., Liu, Y., Wang, W., Shi, H.: Rediversification based particle swarm algorithm with Cauchy mutation. In: Kang, L., Liu, Y., Zeng, S. (eds.) ISICA 2007. LNCS, vol. 4683, pp. 362–371. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Li, C., Liu, Y., Zhou, A., Kang, L., Wang, H.: A fast particle swarm optimization algorithm with Cauchy mutation and Natural Selection Strategy. In: Kang, L., Liu, Y., Zeng, S. (eds.) ISICA 2007. LNCS, vol. 4683, pp. 334–343. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Wang, H., Liu, Y., Li, C., Zeng, S.: A hybrid particle swarm algorithm with Cauchy mutation. In: Proceedings of 2007 IEEE Swarm Intelligence Symposium, pp. 356–361. IEEE Press, Los Alamitos (2007)

    Chapter  Google Scholar 

  8. Liu, Y., Yao, X.: How to control search step size in fast evolutionary programming. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), pp. 652–656. IEEE Press, Los Alamitos (2002)

    Google Scholar 

  9. Yao, X., Lin, G., Liu, Y.: An analysis of evolutionary algorithms based on neighbourhood and step sizes. In: Angeline, P.J., McDonnell, J.R., Reynolds, R.G., Eberhart, R. (eds.) EP 1997. LNCS, vol. 1213, pp. 297–307. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  10. Törn, A., Žilinskas, A. (eds.): Global Optimization. LNCS, vol. 350. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  11. Bäck, T., Schwefel, H.-P.: An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation 1(1), 1–23 (1993)

    Article  Google Scholar 

  12. Feller, W.: An Introduction to Probability Theory and Its Applications, 2nd edn., vol. 2. John Wiley & Sons, Inc, Chichester (1971)

    MATH  Google Scholar 

  13. Liu, Y.: Correlation between mutations and self-adaptation in evolutionary programming. In: Kang, L., Cai, Z., Yan, X., Liu, Y. (eds.) ISICA 2008. LNCS, vol. 5370, pp. 58–66. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Schwefel, H.-P.: Evolution and Optimum Seeking. John Wiley & Sons, New York (1995)

    MATH  Google Scholar 

  15. Liu, Y.: Operator adaptation in evolutionary programming. In: Kang, L., Liu, Y., Zeng, S. (eds.) ISICA 2007. LNCS, vol. 4683, pp. 90–99. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Y. (2010). Measurements in Fast Evolutionary Programming. In: Cai, Z., Tong, H., Kang, Z., Liu, Y. (eds) Computational Intelligence and Intelligent Systems. ISICA 2010. Communications in Computer and Information Science, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16388-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16388-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16387-6

  • Online ISBN: 978-3-642-16388-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics