Property Testing of Massively Parametrized Problems – A Survey | SpringerLink
Skip to main content

Property Testing of Massively Parametrized Problems – A Survey

  • Chapter
Property Testing

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6390))

Abstract

We survey property testing results for the so called ’massively parametrized’ model (or problems). The massively-parametrized framework studies problems such as: Given a graph G = (V,E), consider the property BI(G) containing all subgraphs of G that are bipartite.

Massively parametrized Properties, such as BI(G), are defined by two ingredients: a ’general’ property of inputs (e.g, ’being bipartite’ for the example above), and an underlying given structure (the graph G for the property BI(G)). Then the property is the restriction of the general property to inputs that are associated with the given structure.

In such situation, keeping the general property fixed and varying the underlying structure, the property and the corresponding tests might vary significantly in their structure. The focus of the study in this framework is how, for a fixed general property, the testing problem changes while changing the underlying structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N.: Testing subgraphs in large graphs. Random Struct. Algorithms 21(3-4), 359–370 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Krivelevich, M., Newman, I., Szegedy, M.: Regular languages are testable with a constant number of queries. SIAM Journal on Computing 30, 1842–1862 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., Woodruff, D.P.: Transitive-closure spanners. In: SODA, pp. 932–941 (2009)

    Google Scholar 

  4. Ben-Sasson, E., Harsha, P., Raskhodnikova, S.: Some 3CNF properties are hard to test. SIAM J. Comput. 35(1), 1–21 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bender, M.A., Ron, D.: Testing properties of directed graphs: acyclicity and connectivity. Random Struct. Algorithms 20(2), 184–205 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chakraborty, S., Fischer, E., Lachish, O., Matsliah, A., Newman, I.: Testing s-t -connectivity. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 380–394. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Dinur, I.: The PCP theorem by gap amplification. J. ACM 54(3), 12 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fischer, E.: The art of uninformed decisions: A primer to property testing. BEATCS: Bulletin of the European Association for Theoretical Computer Science 75, 97–126 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Fischer, E., Lehman, E., Newman, I., Raskhodnikova, S., Rubinfeld, R., Samorodnitsky, A.: Monotonicity testing over general poset domains. In: Proceedings of the 34th ACM STOC, pp. 474–483 (2002)

    Google Scholar 

  10. Fischer, E.: Personal communication

    Google Scholar 

  11. Fischer, E.: On the strength of comparisons in property testing. Inf. Comput. 189(1), 107–116 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fischer, E., Lachish, O., Matsliah, A., Newman, I., Yahalom, O.: On the query complexity of testing orientations for being Eulerian. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 402–415. Springer, Heidelberg (2008) (to appear in Algorithmica)

    Chapter  Google Scholar 

  13. Fischer, E., Lachish, O., Newman, I., Rosenberg, E.: Lower bound technique for properties of underlying graphs. In Preparations

    Google Scholar 

  14. Fischer, E., Lachish, O., Nimbhorkar, P.: In Preparations

    Google Scholar 

  15. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. J. ACM 45(4), 653–750 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Halevy, S., Lachish, O., Newman, I., Tsur, D.: Testing orientation properties. Electronic Colloquium on Computational Complexity (ECCC) (153) (2005)

    Google Scholar 

  17. Halevy, S., Lachish, O., Newman, I., Tsur, D.: Testing properties of constraint-graphs. In: IEEE Conference on Computational Complexity, pp. 264–277 (2007)

    Google Scholar 

  18. Kostochka, A.: The minimum Hadwiger number for graphs with a given mean degree of vertices. Metody Diskret. Analiz. 38, 37–58 (1982)

    MathSciNet  MATH  Google Scholar 

  19. Lachish, O., Newman, I., Shapira, A.: Space Complexity vs. Query Complexity. Computational Complexity 17(1), 70–93 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Newman, I.: Testing membership in languages that have small width branching programs. SIAM J. Comput. 31(5), 1557–1570 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ron, D.: Property testing (A Tutorial). In: Rajasekaran, S., Pardalos, P.M., Reif, J.H., Rolin, J.D.P. (eds.) Handbook of Randomized Computing. Kluwer Press, Dordrecht (2001)

    Google Scholar 

  22. Thomason, A.: An extremal function for contractions of graphs. Math. Proc. Cambridge Philos. Soc. 95, 261–265 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Newman, I. (2010). Property Testing of Massively Parametrized Problems – A Survey. In: Goldreich, O. (eds) Property Testing. Lecture Notes in Computer Science, vol 6390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16367-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16367-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16366-1

  • Online ISBN: 978-3-642-16367-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics