Reverse Engineering of Gene Regulation Networks with an Application to the DREAM4 in silico Network Challenge | SpringerLink
Skip to main content

Reverse Engineering of Gene Regulation Networks with an Application to the DREAM4 in silico Network Challenge

  • Chapter
  • First Online:
Handbook of Statistical Bioinformatics

Abstract

Despite much research, reverse engineering of gene regulation remains a challenging task due to a large number of genes involved and complex relationships among them. In this chapter, we review statistical methods for inferring gene regulation networks, specifically focusing on the methods for analyzing gene expression data. We then present a new reverse engineering method in order to efficiently utilize datasets from various perturbation experiments as well as to integrate these multiple sources of information. We apply our approach to the DREAM in silico network challenge to demonstrate its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andercut, M., & Kauffman, S. A. (2008). On the sparse reconstruction of gene networks. Journal of Computational Biology, 15(1), 21–30.

    Article  MathSciNet  Google Scholar 

  2. Andrecut, M., Huang, S., & Kauffman, S. A. (2008). Heuristic approach to sparse approximation of gene regulatory networks. Journal of Computational Biology, 15(9), 1173–1186.

    Article  MathSciNet  Google Scholar 

  3. Bansal, M., Gatta, G. D., & di Bernardo, D. (2006). Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics, 22(7), 815–822.

    Article  Google Scholar 

  4. Bernt Øksendal, (2006). Stochastic differential equation: An introduction with applications (6th ed.). Springer Heidelberg Dordrecht London New York.

    Google Scholar 

  5. Bonneau, R., Reiss, D. J., Shannon, P., Facciotti, M., Hood, L., Baliga, N. S., & Thorsson, V. (2006). The inferelator: An algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biology, 7, R36.

    Article  Google Scholar 

  6. Buchler, N. E., Garland, U., & Hwa, T. (2003). On schemes of combinatorial transcription logic. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 5136–5141.

    Article  Google Scholar 

  7. Butte, A. J., Tamayo, P., Slonim, D., Golub, T. R., & Kohane, I. S. (2000). Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 12182–12186.

    Article  Google Scholar 

  8. Butte, A. S., & Kohane, I. S. (2003). Relevance networks: A first step toward finding genetic regulatory networks within microarray data. In G. Parmigiani, E.S. Garrett, R.A. Irizarry, & S.L. Zeger (Eds.), The analysis of gene expression data: Methods and Software, (pp. 428–446). New York, NY: Springer.

    Chapter  Google Scholar 

  9. Cao, J., & Zhao, H. (2008). Estimating dynamic models for gene regulation networks. Bioinformatics, 15;24(14), 1619–1624.

    Google Scholar 

  10. Chen, K. C., Wang, T. Y., Tseng, H. H., Huang, C. Y. F., & Kao, C. Y. (2005). A stochastic differential equation model for quantifying transcriptional regulatory network in saccharomyces cerevisiae. Bioinformatics, 21(12), 2883–2890.

    Article  Google Scholar 

  11. Chickering, D. M. (1996). Learing Bayesian Networks is NP-complete. In D. Fisher & H.-J. Lenz (Eds.), Learning from data: Artificial intelligence and statistics, (pp. 121–130). New York: Springer-Verlag.

    Chapter  Google Scholar 

  12. Christley, S., Nie, Q., & Xie, X. (2009). Incorporating existing network information into gene network inference. PLoS ONE, 4(8), e6799.

    Article  Google Scholar 

  13. Chu, S., DeRisi, J., Eisen, M., Botstein, J., Brown, P. O., & Herskowitz, I. (1998). The transcriptional program of sporulation in budding yeast. Science, 282(5389), 699–705.

    Article  Google Scholar 

  14. Dobra, A., Hans, C., Jones, B., Nevins, J. R., Yao, G., & West, M. (2004). Sparse graphical models for exploring gene expression data. Journal of Multivariate Analysis, 90(1), 196–212.

    Article  MathSciNet  MATH  Google Scholar 

  15. Ellis, B., & Wong, W. H. (2008). Learning causal Bayesian network structures from experimental data. Journal of the American Statistical Association, 103, 778–789.

    Article  MathSciNet  MATH  Google Scholar 

  16. Fisher, R. A. (1948). Combining independent tests of significance. American Statistician, 2(5), 30.

    Google Scholar 

  17. Fisk, P. R. (1970). A note on a characterization of the multivariate normal distribution. The Annals of Mathematical Statistics, 41, 486–494.

    Article  MathSciNet  MATH  Google Scholar 

  18. Friedman, N., Linial, M., Nachman, I., & Pe’er, D. (2000). Using Bayesian networks to analyze expression data. Journal of Computational Biology, 7, 601–620.

    Article  Google Scholar 

  19. Gardner, T. S., di Bernardo, D., Lorenz, D., & Collins, J. J. (2003). Inferring genetic networks and identifying compound mode of action via expression profiling. Science, 4, 102–105.

    Article  Google Scholar 

  20. Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D., & Brown, P. O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell, 11(12), 4241–4257.

    Google Scholar 

  21. Granger, C. W. J. (1980). Testing for causality, a personal viewpoint. Journal of Economic Dynamics and Control, 2, 329–352.

    Article  MathSciNet  Google Scholar 

  22. Hartemink, A. J., Gifford, D. K., Jaakkola, T. S., & Young, R. A. (2001). Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pac Symp Biocomput., 422–433.

    Google Scholar 

  23. Hughes, T. R., Marton, M. J., Jones, A. R., Roberts, C. J., Stoughton, R., Armour, C. D., Bennett, H. A., Coffey, E., Dai, H., He, Y. D., Kidd, M. J., King, A. M., Meyer, M. R., Slade, D., Lum, P. Y., Stepaniants, S. B., Shoemaker, D. D., Gachotte, D., Chakraburtty, K., Simon, J., Bard, M., & Friend, S. H. (2000). Functional discovery via a compendium of expression profiles. Cell, 102(1), 109–126.

    Article  Google Scholar 

  24. Jordan, M. I. (2004). Graphical models. Statistical Science, 19(1), 140–155.

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, H., & Gui, J. (2006). Gradient directed regularization for sparse gaussian concentration graphs, with applications to inference of genetic networks. Biostatistics, 7(2), 302–317.

    Article  MATH  Google Scholar 

  26. Marbach, D., Schaffter, T., Mattiussi, C., & Floreano, D. (2009). Generating realistic in silico gene networks fro performance assessment of reverse engineering methods. Journal of Computational Biology, 16(2), 229–239.

    Article  Google Scholar 

  27. Margolin, A. A., Memenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Favera, R. D., & Califano, A. (2006). ARCANE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics, 7(1), S7.

    Article  Google Scholar 

  28. Meinshausen, N., & Buhlmann, P. (2006). High-dimensional graphs and variable selection with the LASSO. Annals of Statistics, 34(3), 1436.

    Article  MathSciNet  MATH  Google Scholar 

  29. Opgen-Rhein, R., & Strimmer, K. (2007). Learning causal networks from systems biology time course data: An effective model selection procedure for the vector autoregressive process. BMC Bioinformatics, 8(2), S3.

    Article  Google Scholar 

  30. Peng, J., Wang, P., Zhou, N., & Zhu, J. (2009). Partial correlation estimation by joint sparse regression models. Journal of the American Statistical Association, 104(486), 735–746.

    Article  MathSciNet  Google Scholar 

  31. Perrin, B. E., Ralaivola, L., Mazurie, A., Bottani, S., Mallet, J., & d’Alche-Buc, F. (2003). Gene networks inference using dynamic Bayesian networks. Bioinformatics, 19(2), ii138–ii148.

    Google Scholar 

  32. Ramsay, J. O., Hooker, G., Cao, G., & Campbell, D. (2007). Parameter estimation for differential equations: A generalized smoothing approach (with discussion). Journal of Royal Statistical Society, Series B, 69, 741–769.

    Article  MathSciNet  Google Scholar 

  33. Rice, J. J., Tu, Y., & Stolovizky, G. (2005). Reconstructing biological networks using conditional correlation analysis. Bioinformatics, 21(6), 765–773.

    Article  Google Scholar 

  34. Rogers, S., & Girolami, M. (2005). A Bayesian regression approach to the inference of regulatory networks from gene expression data. Bioinformatics, 21(14), 3131–3137.

    Article  Google Scholar 

  35. Savageau, M. A. (1969). Biochemical systems analysis. I. some mathematical properties of the rate law for the component enzymatic reactions. Journal of Theoretical Biology, 25(3), 365–369.

    Google Scholar 

  36. Savageau, M. A. (1969). Biochemical systems analysis. II. the steady-state solutions for an n-pool system using a power-law approximation. Journal of Theoretical Biology, 25(3), 370–379.

    Google Scholar 

  37. Schafer, J., & Strimmer, K. (2005). An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics, 21, 754–764.

    Article  Google Scholar 

  38. Schafer, J., & Strimmer, K. (2005). A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology, 4, 1–30.

    Article  MathSciNet  Google Scholar 

  39. Shimamura, T., Imoto, S., Yamaguchi, R., Fujita, A., Nagasaki, M., & Miyano, S. (2009). Recursive regularization for inferring gene networks from time-course gene expression profiles. BMC Systems Biology, 3, 41.

    Article  Google Scholar 

  40. Shimamura, T., Imoto, S., Yamaguchi, R., & Miyano, S. (2007). Weighted LASSO in graphical Gaussian modeling for large gene network estimation based on microarray data. Genome Informatics, 19, 142–153.

    Article  Google Scholar 

  41. Soranzo, N., Bianconi, G., & Altafini, C. (2007). Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: Synthetic versus real data. Bioinformatics, 23, 1640–1647.

    Article  Google Scholar 

  42. Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D., & Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9(12), 3273–3297.

    Google Scholar 

  43. Stolovitzky, G., Monroe, D., & Califano, A. (2007). Dialogue on reverse-engineering assessment and methods: The DREAM of high-throughput pathway inference. Annals of the Newyork Academy of Sciences, 1115, 1–22.

    Article  Google Scholar 

  44. Stolovitzky, G., Prill, R., & Califano, A. (2009). Lessons from the DREAM2 challenges. Annals of the New York Academy of Sciences, 1158, 159–195.

    Article  Google Scholar 

  45. Sun, N., & Zhao, H. (2009). Reconstructing transcriptional regulatory networks through genomic data. Statistical Methods in Medical Research, 18, 595–617.

    Article  MathSciNet  Google Scholar 

  46. Wahba, G. (1985). A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem. Annals of Statistics, 13, 1378–1402.

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, S. C. (2004). Reconstructing gene networks from tiem ordered gene expression data using bayesian method with global search algorithm. Journal of Bioinformatics and Computational Biology, 2, 441–458.

    Article  Google Scholar 

  48. Werhli, A. V., Grzegorczyk, M., & Husmeier, D. (2006). Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and Bayesian networks. Bioinformatics, 22, 2623–2531.

    Article  Google Scholar 

  49. Wille, A., & Buhlmann, P. (2006). Low-order conditional independence graphs for inferring genetic networks. Statistical Applications in Genetics and Molecular Biology, 5(1), Article 1.

    Google Scholar 

  50. Yip, Y. L. (2009). Computational reconstruction of biological networks. Ph.D. thesis, Yale University, New Haven, CT.

    Google Scholar 

  51. Zou, M., & Conzen, S. D. (2005). A new dynamic bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, 21, 71–79.

    Article  Google Scholar 

Download references

Acknowledgements

Supported in part by NIH grants GM59507 and T15LM07056, a pilot grant from the Yale Pepper Center, NSF grant DMS0714817, and a fellowship from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chun, H., Kang, J., Zhang, X., Deng, M., Ma, H., Zhao, H. (2011). Reverse Engineering of Gene Regulation Networks with an Application to the DREAM4 in silico Network Challenge. In: Lu, HS., Schölkopf, B., Zhao, H. (eds) Handbook of Statistical Bioinformatics. Springer Handbooks of Computational Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16345-6_22

Download citation

Publish with us

Policies and ethics