Abstract
Despite much research, reverse engineering of gene regulation remains a challenging task due to a large number of genes involved and complex relationships among them. In this chapter, we review statistical methods for inferring gene regulation networks, specifically focusing on the methods for analyzing gene expression data. We then present a new reverse engineering method in order to efficiently utilize datasets from various perturbation experiments as well as to integrate these multiple sources of information. We apply our approach to the DREAM in silico network challenge to demonstrate its performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andercut, M., & Kauffman, S. A. (2008). On the sparse reconstruction of gene networks. Journal of Computational Biology, 15(1), 21–30.
Andrecut, M., Huang, S., & Kauffman, S. A. (2008). Heuristic approach to sparse approximation of gene regulatory networks. Journal of Computational Biology, 15(9), 1173–1186.
Bansal, M., Gatta, G. D., & di Bernardo, D. (2006). Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics, 22(7), 815–822.
Bernt Øksendal, (2006). Stochastic differential equation: An introduction with applications (6th ed.). Springer Heidelberg Dordrecht London New York.
Bonneau, R., Reiss, D. J., Shannon, P., Facciotti, M., Hood, L., Baliga, N. S., & Thorsson, V. (2006). The inferelator: An algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biology, 7, R36.
Buchler, N. E., Garland, U., & Hwa, T. (2003). On schemes of combinatorial transcription logic. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 5136–5141.
Butte, A. J., Tamayo, P., Slonim, D., Golub, T. R., & Kohane, I. S. (2000). Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 12182–12186.
Butte, A. S., & Kohane, I. S. (2003). Relevance networks: A first step toward finding genetic regulatory networks within microarray data. In G. Parmigiani, E.S. Garrett, R.A. Irizarry, & S.L. Zeger (Eds.), The analysis of gene expression data: Methods and Software, (pp. 428–446). New York, NY: Springer.
Cao, J., & Zhao, H. (2008). Estimating dynamic models for gene regulation networks. Bioinformatics, 15;24(14), 1619–1624.
Chen, K. C., Wang, T. Y., Tseng, H. H., Huang, C. Y. F., & Kao, C. Y. (2005). A stochastic differential equation model for quantifying transcriptional regulatory network in saccharomyces cerevisiae. Bioinformatics, 21(12), 2883–2890.
Chickering, D. M. (1996). Learing Bayesian Networks is NP-complete. In D. Fisher & H.-J. Lenz (Eds.), Learning from data: Artificial intelligence and statistics, (pp. 121–130). New York: Springer-Verlag.
Christley, S., Nie, Q., & Xie, X. (2009). Incorporating existing network information into gene network inference. PLoS ONE, 4(8), e6799.
Chu, S., DeRisi, J., Eisen, M., Botstein, J., Brown, P. O., & Herskowitz, I. (1998). The transcriptional program of sporulation in budding yeast. Science, 282(5389), 699–705.
Dobra, A., Hans, C., Jones, B., Nevins, J. R., Yao, G., & West, M. (2004). Sparse graphical models for exploring gene expression data. Journal of Multivariate Analysis, 90(1), 196–212.
Ellis, B., & Wong, W. H. (2008). Learning causal Bayesian network structures from experimental data. Journal of the American Statistical Association, 103, 778–789.
Fisher, R. A. (1948). Combining independent tests of significance. American Statistician, 2(5), 30.
Fisk, P. R. (1970). A note on a characterization of the multivariate normal distribution. The Annals of Mathematical Statistics, 41, 486–494.
Friedman, N., Linial, M., Nachman, I., & Pe’er, D. (2000). Using Bayesian networks to analyze expression data. Journal of Computational Biology, 7, 601–620.
Gardner, T. S., di Bernardo, D., Lorenz, D., & Collins, J. J. (2003). Inferring genetic networks and identifying compound mode of action via expression profiling. Science, 4, 102–105.
Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D., & Brown, P. O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell, 11(12), 4241–4257.
Granger, C. W. J. (1980). Testing for causality, a personal viewpoint. Journal of Economic Dynamics and Control, 2, 329–352.
Hartemink, A. J., Gifford, D. K., Jaakkola, T. S., & Young, R. A. (2001). Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pac Symp Biocomput., 422–433.
Hughes, T. R., Marton, M. J., Jones, A. R., Roberts, C. J., Stoughton, R., Armour, C. D., Bennett, H. A., Coffey, E., Dai, H., He, Y. D., Kidd, M. J., King, A. M., Meyer, M. R., Slade, D., Lum, P. Y., Stepaniants, S. B., Shoemaker, D. D., Gachotte, D., Chakraburtty, K., Simon, J., Bard, M., & Friend, S. H. (2000). Functional discovery via a compendium of expression profiles. Cell, 102(1), 109–126.
Jordan, M. I. (2004). Graphical models. Statistical Science, 19(1), 140–155.
Li, H., & Gui, J. (2006). Gradient directed regularization for sparse gaussian concentration graphs, with applications to inference of genetic networks. Biostatistics, 7(2), 302–317.
Marbach, D., Schaffter, T., Mattiussi, C., & Floreano, D. (2009). Generating realistic in silico gene networks fro performance assessment of reverse engineering methods. Journal of Computational Biology, 16(2), 229–239.
Margolin, A. A., Memenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Favera, R. D., & Califano, A. (2006). ARCANE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics, 7(1), S7.
Meinshausen, N., & Buhlmann, P. (2006). High-dimensional graphs and variable selection with the LASSO. Annals of Statistics, 34(3), 1436.
Opgen-Rhein, R., & Strimmer, K. (2007). Learning causal networks from systems biology time course data: An effective model selection procedure for the vector autoregressive process. BMC Bioinformatics, 8(2), S3.
Peng, J., Wang, P., Zhou, N., & Zhu, J. (2009). Partial correlation estimation by joint sparse regression models. Journal of the American Statistical Association, 104(486), 735–746.
Perrin, B. E., Ralaivola, L., Mazurie, A., Bottani, S., Mallet, J., & d’Alche-Buc, F. (2003). Gene networks inference using dynamic Bayesian networks. Bioinformatics, 19(2), ii138–ii148.
Ramsay, J. O., Hooker, G., Cao, G., & Campbell, D. (2007). Parameter estimation for differential equations: A generalized smoothing approach (with discussion). Journal of Royal Statistical Society, Series B, 69, 741–769.
Rice, J. J., Tu, Y., & Stolovizky, G. (2005). Reconstructing biological networks using conditional correlation analysis. Bioinformatics, 21(6), 765–773.
Rogers, S., & Girolami, M. (2005). A Bayesian regression approach to the inference of regulatory networks from gene expression data. Bioinformatics, 21(14), 3131–3137.
Savageau, M. A. (1969). Biochemical systems analysis. I. some mathematical properties of the rate law for the component enzymatic reactions. Journal of Theoretical Biology, 25(3), 365–369.
Savageau, M. A. (1969). Biochemical systems analysis. II. the steady-state solutions for an n-pool system using a power-law approximation. Journal of Theoretical Biology, 25(3), 370–379.
Schafer, J., & Strimmer, K. (2005). An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics, 21, 754–764.
Schafer, J., & Strimmer, K. (2005). A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology, 4, 1–30.
Shimamura, T., Imoto, S., Yamaguchi, R., Fujita, A., Nagasaki, M., & Miyano, S. (2009). Recursive regularization for inferring gene networks from time-course gene expression profiles. BMC Systems Biology, 3, 41.
Shimamura, T., Imoto, S., Yamaguchi, R., & Miyano, S. (2007). Weighted LASSO in graphical Gaussian modeling for large gene network estimation based on microarray data. Genome Informatics, 19, 142–153.
Soranzo, N., Bianconi, G., & Altafini, C. (2007). Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: Synthetic versus real data. Bioinformatics, 23, 1640–1647.
Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D., & Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9(12), 3273–3297.
Stolovitzky, G., Monroe, D., & Califano, A. (2007). Dialogue on reverse-engineering assessment and methods: The DREAM of high-throughput pathway inference. Annals of the Newyork Academy of Sciences, 1115, 1–22.
Stolovitzky, G., Prill, R., & Califano, A. (2009). Lessons from the DREAM2 challenges. Annals of the New York Academy of Sciences, 1158, 159–195.
Sun, N., & Zhao, H. (2009). Reconstructing transcriptional regulatory networks through genomic data. Statistical Methods in Medical Research, 18, 595–617.
Wahba, G. (1985). A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem. Annals of Statistics, 13, 1378–1402.
Wang, S. C. (2004). Reconstructing gene networks from tiem ordered gene expression data using bayesian method with global search algorithm. Journal of Bioinformatics and Computational Biology, 2, 441–458.
Werhli, A. V., Grzegorczyk, M., & Husmeier, D. (2006). Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and Bayesian networks. Bioinformatics, 22, 2623–2531.
Wille, A., & Buhlmann, P. (2006). Low-order conditional independence graphs for inferring genetic networks. Statistical Applications in Genetics and Molecular Biology, 5(1), Article 1.
Yip, Y. L. (2009). Computational reconstruction of biological networks. Ph.D. thesis, Yale University, New Haven, CT.
Zou, M., & Conzen, S. D. (2005). A new dynamic bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, 21, 71–79.
Acknowledgements
Supported in part by NIH grants GM59507 and T15LM07056, a pilot grant from the Yale Pepper Center, NSF grant DMS0714817, and a fellowship from the China Scholarship Council.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Chun, H., Kang, J., Zhang, X., Deng, M., Ma, H., Zhao, H. (2011). Reverse Engineering of Gene Regulation Networks with an Application to the DREAM4 in silico Network Challenge. In: Lu, HS., Schölkopf, B., Zhao, H. (eds) Handbook of Statistical Bioinformatics. Springer Handbooks of Computational Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16345-6_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-16345-6_22
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16344-9
Online ISBN: 978-3-642-16345-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)