An Assessment of Node Classification Accuracy in Social Networks Using Label-Dependent Feature Extraction | SpringerLink
Skip to main content

An Assessment of Node Classification Accuracy in Social Networks Using Label-Dependent Feature Extraction

  • Conference paper
Knowledge Management, Information Systems, E-Learning, and Sustainability Research (WSKS 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 111))

Included in the following conference series:

Abstract

Node classification in Social Network is currently receiving raising attention in the Social Network Analysis research. The main objective of node classification is to assign the correct label to the unlabeled nodes from a set of all possible class labels. This classification task is performed using features extracted from a Social Network dataset. The success of proper feature extraction significantly influences classification accuracy, providing more discriminative description of the data. This paper describes label-dependent features extraction and examines the classification accuracy based on features extracted with this approach. The experiments on real-world data have shown that usage of label-dependent features can lead to significant improvement of classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Desrosiers, C., Karypis, G.: Within-network classification using local structure similarity. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS, vol. 5781, pp. 260–275. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Gallagher, B., Eliassi-Rad, T.: Leveraging Label-Independent Features for Classification in Sparsely Labeled Networks: An Empirical Study. In: Proceedings of the Second ACM SIGKDD Workshop on Social Network Mining and Analysis (SNA-KDD 2008), Las Vegas, NV (2008)

    Google Scholar 

  3. Gallagher, B., Tong, H., Eliassi-Rad, T., Faloutsos, C.: Using ghost edges for classification in sparsely labeled networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 256 – 264 (2008)

    Google Scholar 

  4. Jensen, D., Neville, J.: Autocorrelation and linkage cause bias in evaluation of relational learners. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 101–116. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Jensen, D., Neville, J., Gallagher, B.: Why collective inference improves relational classification. In: The Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 593 – 598 (2004)

    Google Scholar 

  6. Kajdanowicz, T., Kazienko, P., Kraszewski, J.: Boosting Algorithm with Sequence-loss Cost Function for Structured Prediction. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010. LNCS (LNAI), vol. 6076, pp. 573–580. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Lu, Q., Getoor, L.: Link-based classification. In: Proceedings of the 20th International Conference on Machine Learning ICML 2003, pp. 496 – 503 (2003)

    Google Scholar 

  8. Macskassy, S., Provost, F.: A brief survey of machine learning methods for classification in networked data and an application to suspicion scoring. In: Airoldi, E.M., Blei, D.M., Fienberg, S.E., Goldenberg, A., Xing, E.P., Zheng, A.X. (eds.) ICML 2006. LNCS, vol. 4503, pp. 172–175. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. McPherson, M., Smith-Lovin, L., Cook, J.: Birds of a feather: Homophily in social networks. Annual Review of Sociology 27, 415–444 (2007)

    Article  Google Scholar 

  10. Neville, J., Jensen, D.: Collective Classification with Relational Dependency Networks. In: Proceedings of the Second International Workshop on Multi-Relational Data Mining, Washington, DC, pp. 77–91 (2003)

    Google Scholar 

  11. Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collective classification in network data. Artificial Intelligence Magazine 29(3), 93–106 (2008)

    Google Scholar 

  12. Taskar, B., Abbeel, P., Koller, D.: Discriminative probabilistic models for relational data. In: Proceedings of UAI 2002, Edmonton, Canada (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kajdanowicz, T., Kazienko, P., Doskocz, P., Litwin, K. (2010). An Assessment of Node Classification Accuracy in Social Networks Using Label-Dependent Feature Extraction. In: Lytras, M.D., Ordonez De Pablos, P., Ziderman, A., Roulstone, A., Maurer, H., Imber, J.B. (eds) Knowledge Management, Information Systems, E-Learning, and Sustainability Research. WSKS 2010. Communications in Computer and Information Science, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16318-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16318-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16317-3

  • Online ISBN: 978-3-642-16318-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics