User Privacy in Web Search | SpringerLink
Skip to main content

User Privacy in Web Search

  • Conference paper
Modeling Decisions for Artificial Intelligence (MDAI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6408))

  • 603 Accesses

Abstract

Web search engines gather a lot of information on the preferences and interests of users. They actually gather enough information to create detailed user profiles which might enable re-identification of the individuals to which those profiles correspond, e.g. thanks to the so-called vanity queries or to linkage of several queries known to have been submitted by the same user. In this way, a broadly used search engine like Google becomes a “big brother” in the purest Orwellian style.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguilar-Melchor, C., Deswarte, Y.: Trustable relays for anonymous communication. Transactions on Data Privacy 2(2), 101–130 (2009)

    MathSciNet  Google Scholar 

  2. AOL Search Data Scandal (August 2006), http://en.wikipedia.org/wiki/AOL_search_data_scandal

  3. Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers’ computation in private information retrieval: Pir with preprocessing. Journal of Cryptology 17, 125–151 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Castellà-Roca, J., Viejo, A., Herrera-Joancomartí, J.: Preserving user’s privacy in web search engines. Computer Communications 32(13-14), 1541–1551 (2009)

    Article  Google Scholar 

  5. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 41–50 (1995)

    Google Scholar 

  6. Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords. Technical Report TR CS0917, Department of Computer Science, Technion (1997)

    Google Scholar 

  7. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. Journal of the ACM 45, 965–981 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Domingo-Ferrer, J.: Coprivacy: towards a theory of sustainable privacy. In: Domingo-Ferrer, J. (ed.) PSD 2010. LNCS, vol. 6344, pp. 258–268. Springer, Heidelberg (2010)

    Google Scholar 

  9. Domingo-Ferrer, J., Bras-Amorós, M., Wu, Q., Manjón, J.: User-private information retrieval based on a peer-to-peer community. Data and Knowledge Engineering 68(11), 1237–1252 (2009)

    Article  Google Scholar 

  10. Domingo-Ferrer, J., Solanas, A., Castellà-Roca, J.: h(k)-Private information retrieval from privacy-uncooperative queryable databases. Online Information Review 33(4), 720–744 (2009)

    Article  Google Scholar 

  11. Erola, A., Castellà-Roca, J., Navarro-Arribas, G., Torra, V.: Semantic microaggregation for the anonymization of query logs. In: Domingo-Ferrer, J. (ed.) PSD 2010. LNCS, vol. 6344, pp. 127–137. Springer, Heidelberg (2010)

    Google Scholar 

  12. Howe, D.C., Nissenbaum, H.: TrackMeNot: Resisting surveillance in web search. In: Kerr, I., Lucock, C., Steeves, V. (eds.) Lessons from the Identity Trail: Privacy, Anonymity and Identity in a Networked Society. Oxford University Press, Oxford (2009), http://www.mrl.nyu.edu/~dhowe/trackmenot/

    Google Scholar 

  13. Internet World Stats, http://www.internetworldstats.com/

  14. iProspect Blended Search Results Study (April 2008), http://www.iprospect.com/premiumPDFs/researchstudy_apr2008_blendedsearchresults.pdf

  15. Nash, J.: Non-cooperative games. Annals of Mathematics 54, 289–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  16. Netcraft June 2010 Web Server Survey, http://news.netcraft.com/archives/2010/06/16/june-2010-web-server-survey.html

  17. Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V. (eds.): Algorithmic Game Theory. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  18. Open Directory Project, http://www.dmoz.org

  19. Ogata, W., Kurosawa, K.: Oblivious keyword search. Journal of Complexity 20(2-3), 356–371 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ostrovsky, R., Skeith III, W.E.: A survey of single-database PIR: techniques and applications. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM Transactions on Information Systems Security 1(1), 66–92 (1998)

    Article  Google Scholar 

  22. Saint-Jean, F., Johnson, A., Boneh, D., Feigenbaum, J.: Private web search. In: Proc. of the 2007 ACM Workshop on Privacy in Electronic Society, pp. 84–90 (2007)

    Google Scholar 

  23. Shen, X., Tan, B., Zhai, C.X.: Privacy protection in personalized search. ACM SIGIR Forum 41(1), 4–17 (2007)

    Article  Google Scholar 

  24. The Tor Project, Inc. “Tor: Overview”, http://torproject.org/overview.html.en

  25. Torbutton 1.2.5, https://addons.mozilla.org/ca/firefox/addon/2275/

  26. Viejo, A., Castellà-Roca, J.: Using social networks to distort users’ profiles generated by web search engines. Computer Networks (to appear)

    Google Scholar 

  27. Princeton University. WordNet: A lexical database for English, http://wordnet.princeton.edu/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Domingo-Ferrer, J. (2010). User Privacy in Web Search. In: Torra, V., Narukawa, Y., Daumas, M. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2010. Lecture Notes in Computer Science(), vol 6408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16292-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16292-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16291-6

  • Online ISBN: 978-3-642-16292-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics