Abstract
In this paper, we propose a feature-weighted mountain clustering method. The proposed method can work well when there are noisy feature variables and could be useful for obtaining initially estimated cluster centers for other clustering algorithms. Results from color image segmentation illustrate the proposed method actually produces better segmentation than previous methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Huang, J.Z., Ng, M.K., Rong, H., Li, Z.: Automated Variable Weighting in K-Means Type Clustering. IEEE Trans. Pattern Anal. Machine Intelligence 27, 657–668 (2005)
Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall, New York (1986)
Yang, M.S., Wu, W.L.: A Modified Mountain Clustering Algorithm. Pattern Anal. Applic. 8, 125–138 (2005)
Yager, R.R., Filev, D.P.: Approximate Clustering Via the Mountain Method. IEEE Trans. Syst. Man Cybern. 24, 1279–1284 (1994)
Liu, J., Yang, Y.H.: Multiresolution Color Image Segmentation Technique. IEEE Trans. on Pattern Analysis and Machine Intelligence 16, 689–700 (1994)
Chiu, S.L.: Fuzzy Model Identification Based on Cluster Estimation. J. Intel. Fuzzy Syst. 2, 267–278 (1994)
Kim, D.W., Lee, K.H., Lee, D.: A Novel Initialization for the Fuzzy C-Means Algorithm for Color Clustering. Pattern Recognition Letters 25, 227–237 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hung, WL., Yang, MS., Yu, J., Hwang, CM. (2010). Feature-Weighted Mountain Method with Its Application to Color Image Segmentation. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds) Rough Set and Knowledge Technology. RSKT 2010. Lecture Notes in Computer Science(), vol 6401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16248-0_73
Download citation
DOI: https://doi.org/10.1007/978-3-642-16248-0_73
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16247-3
Online ISBN: 978-3-642-16248-0
eBook Packages: Computer ScienceComputer Science (R0)