Decomposition of EEG Signals for Multichannel Neural Activity Analysis in Animal Experiments | SpringerLink
Skip to main content

Decomposition of EEG Signals for Multichannel Neural Activity Analysis in Animal Experiments

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6365))

Abstract

We describe in this paper some advanced protocols for the discrimination and classification of neuronal spike waveforms within multichannel electrophysiological recordings. Sparse decomposition was used to serarate the linearly independent signals underlying sensory information in cortical spike firing pat- terns. We introduce some modifications in the the IDE algorithm to take into account prior knowledge on the spike waveforms. We have investigated motor cortex responses recorded during movement in freely moving rats to provide ev- idence for the relationship between these patterns and special behavioral task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amin, A.A., Babaie-Zadeh, M., Jutten, C.A.: A fast method for sparse component analysisbased on iterative detection-estimation. In: Proceedings of Maxent (2006)

    Google Scholar 

  2. Amirikian, B., Georgopoulus, A.P.: Motor Cortex: Coding and Decoding of Directional Operations. In: The Handbook of Brain Theory and Neural Networks, pp. 690–695. MIT Press, Cambridge (2003)

    Google Scholar 

  3. Bodreau, M., Smith, A.M.: Activity in rostal motor cortex in response to predicatel force-pulse pertubations in precision grip task. J. Neurophysiol. 86, 1079–1085 (2005)

    Google Scholar 

  4. Donoho, D.L.: For most large underdetermined systems of linear equations the minimal ℓ1-norm solution is also the sparsest solution. Technical report (2004)

    Google Scholar 

  5. Donoho, D.L., Huo, X.: Uncertainty Principles and Ideal Atomic Decomposition. IEEE Trans. Inform. Theory 47(7), 2845–2862 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gorodnitsky, I.F., Rao, B.D.: Sparse signal reconstruction from limited data using FOCUSS, a re-weighted minimum norm algorithm. IEEE Transactions on Signal Processing 45(3), 600–616 (1997)

    Article  Google Scholar 

  7. Hyvarinen, A., Hoyer, P.O., Inkl, M.: Topographic independent component analysis. Neural Computation 13, 1527–1558 (2001)

    Article  Google Scholar 

  8. Li, Y., Cichocki, A., Amari, S.: Sparse component analysis for blind source separation with less sensors than sources. In: ICA 2003, pp. 89–94 (2003)

    Google Scholar 

  9. Mohimani, G.H., Babaie-Zadeh, M., Jutten, C.: Fast sparse representation based on smoothed ℓ0 norm. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 389–396. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Mohimani, H., Babaie-Zadeh, M., Jutten, C.: A fast approach for overcomplete sparse decomposition based on smoothed l0 norm. Accepted in IEEE Trans. on Signal Processing

    Google Scholar 

  11. Morrow, M.M., Miller, L.E.: Prediction of muscle activity by populations of sequentially recorded primary motor cortex neurons. J. Neurophysiol. 89, 1079–1085 (2003)

    Google Scholar 

  12. Takigawa, I., Kudo, M., Nakamura, A., Toyama, J.: On the minimum ℓ1-norm signal recovery in underdetermined source separation. In: Puntonet, C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 193–200. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Van Staveren, G.W., Buitenweg, J.R., Heida, T., Ruitten, W.L.C.: Wave shape classification of spontaneaous neural activity in cortical cultures on micro-electrode arrays. In: Proceedings of the Second joint EMBS/BMES Conference, Houston, TX, USA, October 23-26 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vigneron, V., Chen, H., Chen, YT., Lai, HY., Chen, YY. (2010). Decomposition of EEG Signals for Multichannel Neural Activity Analysis in Animal Experiments. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2010. Lecture Notes in Computer Science, vol 6365. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15995-4_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15995-4_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15994-7

  • Online ISBN: 978-3-642-15995-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics