Abstract
During the video and fixed image acquisition procedure of an automatic iris recognition system, it is essential to acquire focused iris images. If defocus iris images are acquired, the performance of the iris recognition is degraded, because iris images don’t have enough feature information. Therefore it’s important to adopt the image quality evaluation method before the image processing. In this paper, it is analyzed and compared four representative quality assessment methods on the MBGC iris database. Through methods, it can fast grade the images and pick out the high quality iris images from the video sequence captured by real-time iris recognition camera. The experimental results of the four methods according to the receiver operating characteristic (ROC) curve are shown. Then the optimal method of quality evaluation that allows better performance in an automatic iris recognition system is founded. This paper also presents an analysis in terms of computation speed of the four methods.
Chapter PDF
Similar content being viewed by others
References
Gamassi, M., Lazzaroni, M., Misino, M., Piuri, V.: Quality assessment of biometric systems: a comprehensive perspective based on accuracy and performance measurement. IEEE Transactions on Instrumentation and Measurement 54, 1489–1496 (2005)
Chen, Y., Dass, S.C., Jain, A.K.: Localized iris image quality using 2-D wavelets. In: Zhang, D., Jain, A.K. (eds.) ICB 2005. LNCS, vol. 3832, pp. 373–381. Springer, Heidelberg (2005)
Kalka, N.D., Zuo, J., Schmid, N.A., Cukic, B.: Image quality assessment for iris biometric. In: SPIE 6202: Biometric Technology for Human Identification III, vol. 6202, pp. D1–D11 (2006)
Zuo, J., Schmid, N.A.: Global and local quality measures for NIR iris video. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2009, pp. 120–125 (2009)
Zhu, X.-D., Liu, Y.-N., Ming, X.: A quality evaluation method of iris images sequence based on wavelet coefficients in region of interest. In: CIT ’04: Proceedings of the The Fourth International Conference on Computer and Information Technology, Washington, DC, USA, pp. 24–27. IEEE Computer Society, Los Alamitos (2004)
Ma, L., Tan, T., Wang, Y.: Personal identification based on iris texture analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12), 1519–1533 (2003)
Zhang, G., Salganicoff, M.: Method of measuring the focus of close-up image of eyes. Tech. Rep. 5953440, United States Patent (1999)
Daugman, J.G.: How iris recognition works. IEEE Trans. Circ. Syst. Video Tech. 14(1), 21–30 (2004)
Wei, Z., Tan, T., Sun, Z., Cui, J.: Robust and Fast Assessment of Iris Image Quality. In: Zhang, D., Jain, A.K. (eds.) ICB 2005. LNCS, vol. 3832, pp. 464–471. Springer, Heidelberg (2005)
Wang, J., He, X., Shi, P.: An Iris Image Quality Assessment Method Based on Laplacian of Gaussian Operation. In: MVA2007 IAPR Conference on Machine Vision Applications, Tokyo, Japan, May 16-18, pp. 248–251 (2007)
Kang, B.J., Park, K.R.: A study on iris image restoration. In: International Conference on Audio- and Video-Based Biometric Person Authentication, pp. 31–40 (2005)
Burges, J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2, 121–167 (1998)
Multiple Biometric Grand Challenge, face.nist.gov/mbgc/
Jonathon Phillips, P., Bowyer, K.W., Flynn, P.J., Liu, X., Todd Scruggs, W.: The Iris Challenge Evaluation 2005. In: Biometrics: Theory, Applications and Systems, Washington, DC (September 2008)
CASIA iris image database, http://www.sinobiometrics.com
National Institute of Standards and Technology (NIST). Iris Challenge Evaluation (2008), iris.nist.gov/ice/
Proença, H., Alexandre, L.A.: UBIRIS: A noisy iris image database. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 970–977. Springer, Heidelberg (2005)
Masek, L.: Recognition of human iris patterns for biometric identification. Master’s thesis, University of Western Australia (2003)
Daugman, J.G.: How Iris Recognition Works. IEEE Trans. on Circuits and Systems for Video Technology 14(1), 21–30 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Colores-Vargas, J.M., García-Vázquez, M.S., Ramírez-Acosta, A.A. (2010). Measurement of Defocus Level in Iris Images Using Different Convolution Kernel Methods. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Kittler, J. (eds) Advances in Pattern Recognition. MCPR 2010. Lecture Notes in Computer Science, vol 6256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15992-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-15992-3_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15991-6
Online ISBN: 978-3-642-15992-3
eBook Packages: Computer ScienceComputer Science (R0)