Comparison-Based Optimizers Need Comparison-Based Surrogates | SpringerLink
Skip to main content

Comparison-Based Optimizers Need Comparison-Based Surrogates

  • Conference paper
Parallel Problem Solving from Nature, PPSN XI (PPSN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6238))

Included in the following conference series:

Abstract

Taking inspiration from approximate ranking, this paper investigates the use of rank-based Support Vector Machine as surrogate model within CMA-ES, enforcing the invariance of the approach with respect to monotonous transformations of the fitness function. Whereas the choice of the SVM kernel is known to be a critical issue, the proposed approach uses the Covariance Matrix adapted by CMA-ES within a Gaussian kernel, ensuring the adaptation of the kernel to the currently explored region of the fitness landscape at almost no computational overhead. The empirical validation of the approach on standard benchmarks, comparatively to CMA-ES and recent surrogate-based CMA-ES, demonstrates the efficiency and scalability of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Auger, A., Hansen, N., Perez Zerpa, J., Ros, R., Schoenauer, M.: Experimental comparisons of derivative free optimization algorithms. In: Vahrenhold, J. (ed.) 8th Intl Symp. Experimental Algorithms. LNCS, vol. 5526, pp. 3–15. Springer, Heidelberg (2009)

    Google Scholar 

  2. Barthelemy, J.-F.M., Haftka, R.: Approximation concepts for optimial structural design – a review. Structural Optimization 5, 129–144 (1993)

    Article  Google Scholar 

  3. Bouzarkouna, Z., Auger, A., Ding, D.: Investigating the local-meta-model CMA-ES for large population sizes. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.) EvoApplicatons 2010. LNCS, vol. 6024, pp. 402–411. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Cristianini, N., Shawe-Taylor, J.: An introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  5. Gelly, S., Ruette, S., Teytaud, O.: Comparison-based algorithms are robust and randomized algorithms anytime. Evolutionary Computation 15(4), 411–434 (2007)

    Article  Google Scholar 

  6. Hansen, N.: Adaptive encoding: How to render search coordinate system invariant. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 205–214. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Hansen, N., Auger, A., Ros, R., Finck, S., Pošík, P.: Comparing results of 31 algorithms from the BBOB-2009. In: GECCO Workshop Proc. ACM Press, New York (2010)

    Google Scholar 

  8. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9(2), 159–195 (2001)

    Article  Google Scholar 

  9. Jin, Y.: A Comprehensive Survey of Fitness Approximation in Evolutionary Computation. Soft Computing 9(1), 3–12 (2005)

    Article  Google Scholar 

  10. Joachims, T.: A support vector method for multivariate performance measures. In: Raedt, L.D., Wrobel, S. (eds.) Proc. ICML 2005. ACM International Conference Proceeding Series, vol. 119, pp. 377–384. ACM, New York (2005)

    Chapter  Google Scholar 

  11. Kern, S., Hansen, N., Koumoutsakos, P.: Local meta-models for optimization using evolution strategies. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 939–948. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Rasheed, K., Hirsh, H.: Informed operators: Speeding up genetic-algorithm-based design optimization using reduced models. In: Whitley, D., et al. (eds.) GECCO 2000, pp. 628–635. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  13. Runarsson, T.P.: Constrained evolutionary optimization by approximate ranking and surrogate models. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 401–408. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Runarsson, T.P.: Ordinal regression in evolutionary computation. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 1048–1057. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Loshchilov, I., Schoenauer, M., Sebag, M. (2010). Comparison-Based Optimizers Need Comparison-Based Surrogates. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15844-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15844-5_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15843-8

  • Online ISBN: 978-3-642-15844-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics