Global Long-Term MIPAS Data Processing: Some Aspects of the Dynamics of the Atmosphere from Lower Stratosphere to Lower Thermosphere | SpringerLink
Skip to main content

Global Long-Term MIPAS Data Processing: Some Aspects of the Dynamics of the Atmosphere from Lower Stratosphere to Lower Thermosphere

  • Conference paper
High Performance Computing in Science and Engineering '10
  • 1897 Accesses

Abstract

The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is a Fourier transform mid-infrared limb scanning high resolution spectrometer which allows for simultaneous measurements of more than 30 atmospheric trace species related to atmospheric chemistry and global change. MIPAS is operated by ESA since mid of 2002 and the mission will be extended through 2013. At the Institute for Meteorology and Climate Research (IMK), MIPAS spectra are used for retrieval of altitude-resolved profiles of abundances of trace species of the atmosphere. These 4-D trace gas distributions are used for the assessment of e.g. stratospheric ozone chemistry, stratospheric cloud physics and heterogeneous chemistry, tropospheric stratospheric exchange, intercontinental transport of pollutants in the upper troposphere, mesospheric stratospheric exchange, effects of solar proton events on stratospheric chemistry, and climate-chemistry models. Over the last year the XC4000 supercomputer has become a major contributor to the total amount of MIPAS data processed at IMK, and hence has helped a lot in filling the gap which results from ESA’s failure to produce altitude-resolved species profiles for the time since March of 2004. Due to the extremely low administration/communication overhead within the processing system, up to 800 processors could be used (and have been many times) in parallel, 50% of the projects used more than 200 processors in parallel. In the last year the processing of MIPAS data on the XC4000 became more focussed on species which are strongly influenced by NLTE (non-local thermodynamic equilibrium). Two corresponding examples of scientific exploitation of MIPAS data are given. 1. The distribution of CO, which essentially behaves like a tracer, from upper troposphere to mesosphere allows to gain insight into several aspects of middle atmosphere dynamics. 2. The evolution of the temperature field from stratosphere to lower thermosphere hints at a dynamic coupling of these altitude regions via planetary wave activity during a major warming event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 19447
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 24309
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fischer, H., Birk, M., Blom, C., Carli, B., Carlotti, M., von Clarmann, T., Delbouille, L., Dudhia, A., Ehhalt, D., Endemann, M., Flaud, J.M., Gessner, R., Kleinert, A., Koopmann, R., Langen, J., López-Puertas, M., Mosner, P., Nett, H., Oelhaf, H., Perron, G., Remedios, J., Ridolfi, M., Stiller, G., and Zander, R. (2008). MIPAS: an instrument for atmospheric and climate research. Atmos. Chem. Phys., 8:2151–2188.

    Article  Google Scholar 

  2. Fischer, H., Blom, C., Oelhaf, H., Carli, B., Carlotti, M., Delbouille, L., Ehhalt, D., Flaud, J.-M., Isaksen, I., López-Puertas, M., McElroy, C.T., and Zander, R. (2000). Envisat-MIPAS, an instrument for atmospheric chemistry and climate research. European Space Agency-Report SP-1229, C. Readings and R. A. Harris (eds.), ESA Publications Division, ESTEC, P. O. Box 299, 2200 AG Noordwijk, The Netherlands.

    Google Scholar 

  3. Funke, B., López-Puertas, M., Bermejo-Pantaleón, D., García-Comas, M., Stiller, G.P., von Clarmann, T., Kiefer, M., and Linden, A. (2010). Experimental evidence for dynamical coupling from the lower atmosphere to the thermosphere during a major stratospheric warming. Geophys. Res. Lett. submitted.

    Google Scholar 

  4. Funke, B., López-Puertas, M., Fischer, H., Stiller, G.P., von Clarmann, T., Wetzel, G., Carli, B., and Belotti, C. (2007). Comment on ’Origin of the January-April 2004 increase in stratospheric NO2 observed in northern polar latitudes’ by J.-B. Renard et al. Geophys. Res. Lett., 34(7).

    Google Scholar 

  5. Funke, B., López-Puertas, M., García-Comas, M., Stiller, G.P., von Clarmann, T., Höpfner, M., Glatthor, N., Grabowski, U., Kellmann, S., and Linden, A. (2009). Carbon monoxide distributions from the upper troposphere to the mesosphere inferred from 4.7 μm non-local thermal equilibrium emissions measured by MIPAS on Envisat. Atmos. Chem. Phys., 9(7):2387–2411.

    Article  Google Scholar 

  6. Funke, B., López-Puertas, M., Stiller, G.P., von Clarmann, T., and Höpfner, M. (2001). A new non–LTE retrieval method for atmospheric parameters from MIPAS–ENVISAT emission spectra. Adv. Space Res., 27(6–7):1099–1104.

    Article  Google Scholar 

  7. Funke, B., Martín-Torres, F.J., López-Puertas, M., Höpfner, M., Hase, F., López-Valverde, M.Á., and García-Comas, M. (2002). A generic non–LTE population model for MIPAS–ENVISAT data analysis. In Geophys. Res. Abstracts, volume 4. Abstracts of the Contributions of the European Geophysical Society, Nice, France, 21–26 April 2002, CD-ROM, ISSN:1029–7006.

    Google Scholar 

  8. Hauchecorne, A., Bertaux, J.-L., Dalaudier, F., Russell III, J.M., Mlynczak, M.G., Kyrölä, E., and Fussen, D. (2007). Large increase of NO2 in the north polar mesosphere in January-February 2004: Evidence of a dynamical origin from GOMOS/ENVISAT and SABER/TIMED data. Geophys. Res. Lett., 34.

    Google Scholar 

  9. Kiefer, M., Grabowski, U., and Fischer, H. (2008). Global Long-Term MIPAS Processing. In Nagel, W.E., Kröner, D., and Resch, M., editors, High Performance Computing in Science and Engineering ’07, Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2007, pages 519–532. Höchstleistungsrechenzentrum Stuttgart, Springer, Berlin Heidelberg.

    Google Scholar 

  10. Kurihara, J., Oyama, S., Nozawa, S., Fujii, R., Tsutsumi, M., Ogawa, Y., and Tomikawa, Y. (2010). Impacts of a stratospheric sudden warming on thermal structures in the high-latitude mesosphere, lower thermosphere, and ionosphere: 2. ground-based observations. Geophys. Res. Lett. to be submitted.

    Google Scholar 

  11. Labitzke, K. (1981). Stratospheric-mesospheric midwinter disturbances: A summary of characteristics. J. Geopys. Res., 86:9665–9678.

    Article  Google Scholar 

  12. Liu, H.-L. and Roble, R.G. (2002). A study of a self-generated stratospheric sudden warming and its mesospheric–lower thermospheric impacts using the coupled TIME-GCM/CCM3. J. Geophys. Res., 107(D23):4695.

    Article  Google Scholar 

  13. Randall, C.E., Harvey, V.L., Manney, G.L., Orsolini, Y.J., Codrescu, M., Sioris, C., Brohede, S., Haley, C.S., Gordley, L.L., Zawodny, J.M., and Russell III, J.M. (2005). Stratospheric effects of energetic particle precipitation in 2003–2004. Geophys. Res. Lett., 32.

    Google Scholar 

  14. Rinsland, C.P., Boone, C., Nassar, R., Walker, K., Bernath, P., McConnell, J.C., and Chiou, L. (2005). Atmospheric Chemistry Experiment (ACE) Arctic stratospheric measurements of NO x during February and March 2004: Impact of intense solar flares. Geophys. Res. Lett., 32.

    Google Scholar 

  15. Stiller, G.P., editor (2000). The Karlsruhe Optimized and Precise Radiative Transfer Algorithm (KOPRA), volume FZKA 6487 of Wissenschaftliche Berichte. Forschungszentrum Karlsruhe.

    Google Scholar 

  16. von Clarmann, T., Glatthor, N., Grabowski, U., Höpfner, M., Kellmann, S., Kiefer, M., Linden, A., Mengistu Tsidu, G., Milz, M., Steck, T., Stiller, G.P., Wang, D.Y., Fischer, H., Funke, B., Gil-López, S., and López-Puertas, M. (2003a). Retrieval of temperature and tangent altitude pointing from limb emission spectra recorded from space by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). J. Geophys. Res., 108(D23).

    Google Scholar 

  17. von Clarmann, T., Glatthor, N., Grabowski, U., Höpfner, M., Kellmann, S., Kiefer, M., Linden, A., Mengistu Tsidu, G., Milz, M., Steck, T., Stiller, G.P., Wang, D.Y., Fischer, H., Funke, B., Gil-López, S., and López-Puertas, M. (2003b). Retrieval of temperature and tangent altitude pointing from limb emission spectra recorded from space by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). J. Geophys. Res., 108(D23).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kiefer, M., Funke, B., Grabowski, U., Linden, A. (2011). Global Long-Term MIPAS Data Processing: Some Aspects of the Dynamics of the Atmosphere from Lower Stratosphere to Lower Thermosphere. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15748-6_36

Download citation

Publish with us

Policies and ethics