Noise Resistance Analysis of Wavelet-Based Channel Energy Feature for Breast Lesion Classification on Ultrasound Images | SpringerLink
Skip to main content

Noise Resistance Analysis of Wavelet-Based Channel Energy Feature for Breast Lesion Classification on Ultrasound Images

  • Conference paper
Advances in Multimedia Information Processing - PCM 2010 (PCM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6298))

Included in the following conference series:

  • 1467 Accesses

Abstract

Wavelet-based channel energy with low cost and high efficacy is a valuable feature for the differential diagnoses between benign and malignant breast lesions. The new feature is a contour approach that generally suffers from lacking a reliable contour detection algorithm with convincing results due to extreme noise. For investigating a procedure suitable for clinical application, noise resistance capability of the new feature is evaluated in this study. The evaluation system consists of two snake-based contour detection algorithms associated with two pre-processes. These combinations can produce four test datasets of contour sonogram. Classification performance evaluation is based on a probabilistic neural network and a genetic algorithm used for distribution parameter determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kolb, T.M., Lichy, J., Newhouse, J.H.: Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27825 patient evaluations. Radiology 225, 165–175 (2002)

    Article  Google Scholar 

  2. Gefen, S., Tretiak, O.J., Piccoli, C.W., Donohue, K.D., Petropulu, A.P., Shankar, P.M., Dumane, V.A., Huang, L., Kutay, M.A., Genis, V., Forsberg, F., Reid, J.M., Goldberg, B.B.: ROC analysis of ultrasound tissue characterization classifiers for breast cancer diagnosis. IEEE Trans. Med. Imag. 22, 170–177 (2003)

    Article  Google Scholar 

  3. Chen, D.R., Chang, R.F., Kuo, W.J., Chen, M.C., Huang, Y.L.: Diagnosis of breast tumors with sonographic texture analysis using wavelet transform and neural networks. Ultrasound Med. Biol. 28, 1301–1310 (2002)

    Article  Google Scholar 

  4. Lee, H.W., Liu, B.D., Hung, K.C., Lei, S.F., Wang, P.C., Yang, T.L.: Breast tumor classification of ultrasound images using wavelet-based channel energy and ImageJ. IEEE Journal of Selected Topics in Signal Processing 3, 81–93 (2009)

    Article  Google Scholar 

  5. Liao, Y.-C., Hung, K.-C., Ku, C.-T., Tsai, C.-F., Guo, S.-M.: Wavelet Octave Energy for Breast Tumor Classification on Sonography: A New Shape Feature. In: Proc. IEEE International Conference on Networking, Sensing and Control (ICNSC 2009), pp. 388–392 (March 2009)

    Google Scholar 

  6. Alvarenga, A.V., Pereira, W.C.A., Infantosi, A.F.C., de Azevedo, C.M.: Classification of breast tumours on ultrasound images using morphometric parameters. In: Proc. IEEE Int. Symp. on Intell. Signal Processing, pp. 206–210 (September 2005)

    Google Scholar 

  7. Andrey, P., Boudier, T.: Adaptive Active Contours. In: ImageJ Conference (2006)

    Google Scholar 

  8. Jacob, M., Blu, T., Unser, M.: A Unifying Approach and Interface for Spline-Based Snakes. In: Proceedings of the SPIE International Symposium on Medical Imaging: Image Processing, San Diego CA, USA, February 17-22. Part I, vol. 4322, pp. 340–347 (2001)

    Google Scholar 

  9. Jacob, M., Blu, T., Unser, M.: Efficient energies and algorithms for parametric snakes. IEEE Transactions on Image Processing 13(9), 1231–1244 (2004)

    Article  Google Scholar 

  10. Specht, D.F.: Probabilistic neural networks. Neural Networks 3(1) (1990) ISSN:0893-6080

    Google Scholar 

  11. Farrokhrooz, M., Karimi, M., Rafiei, A.: A new method for spread value estimation in multi-spread PNN and its application in ship noise classification. In: 9th International Symposium on Signal Processing and Its Applications, ISSPA, pp. 1–4 (2007)

    Google Scholar 

  12. ImageJ, http://rsb.info.nih.gov/ij/index.html

  13. Eramian, M.G., Adams, G.P., Pierson, R.A.: Enhancing ultrasound texture differences for developing an in vivo ’virtual histology’ approach to bovine ovarian imaging. Reproduction, Fertility and Development 19(8), 910–924 (2007)

    Article  Google Scholar 

  14. Holland, J.H.: Genetic Algorithms. In: SCI. A.M., pp. 66–72 (July 1992)

    Google Scholar 

  15. Yu, S., Guan, L.: A CAD system for the automatic detection of clustered microcalcifications in digitized mammogram films. IEEE Transactions on Medical Imaging 19(2), 115–126 (2000)

    Article  Google Scholar 

  16. Shah, V.P., Bruce, L.M., Younan, N.H.: Applying modular classifiers to mammographic mass classification. In: 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEMBS 2004, vol. 1, pp. 1585–1588 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liao, YC., Guo, SM., Hung, KC., Wang, PC., Yang, TL. (2010). Noise Resistance Analysis of Wavelet-Based Channel Energy Feature for Breast Lesion Classification on Ultrasound Images. In: Qiu, G., Lam, K.M., Kiya, H., Xue, XY., Kuo, CC.J., Lew, M.S. (eds) Advances in Multimedia Information Processing - PCM 2010. PCM 2010. Lecture Notes in Computer Science, vol 6298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15696-0_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15696-0_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15695-3

  • Online ISBN: 978-3-642-15696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics