Robust Semi-supervised Learning for Biometrics | SpringerLink
Skip to main content

Robust Semi-supervised Learning for Biometrics

  • Conference paper
Life System Modeling and Intelligent Computing (ICSEE 2010, LSMS 2010)

Abstract

To deal with the problem of sensitivity to noise in semi-supervised learning for biometrics, this paper proposes a robust Gaussian-Laplacian Regularized (GLR) framework based on maximum correntropy criterion (MCC), called GLR-MCC, along with its convergence analysis. The half quadratic (HQ) optimization technique is used to simplify the correntropy optimization problem to a standard semi-supervised problem in each iteration. Experimental results show that the proposed GRL-MCC can effectively improve the semi-supervised learning performance and is robust to mislabeling noise and occlusion as compared with GLR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wang, F., Zhang, C.S.: Label propagation through linear neighborhoods. IEEE Transactions on Knowledge and Data Engineering 20(1), 55–67 (2008)

    Article  Google Scholar 

  2. Wang, F., Zhang, C.S.: Robust self-tuning semi-supervised learning. Neurocomputing 70, 2931–2939 (2007)

    Article  Google Scholar 

  3. Belkin, M., Matveeva, I., Niyogi, P.: Regularization and Semi-supervised Learning on Large Graphs. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI), vol. 3120, pp. 624–638. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Scholkopf, B.: Learning with Local and Global Consistency. In: NIPS 16 (2004)

    Google Scholar 

  5. Zhu, X., Ghahramani, Z., Lafferty, Z.: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions. In: International Conference on Machine Learning, ICML (2003)

    Google Scholar 

  6. Liu, W., Pokharel, P.P., Principe, J.C.: Correntropy: Properties and application in non-gaussian signal processing. IEEE Transactions on Signal Processing 55(11), 5286–5298 (2007)

    Article  MathSciNet  Google Scholar 

  7. He, R., Hu, B.G., Yuan, X.T., Zheng, W.S.: Principal Component Analysis Based on Nonparametric Maximum Entropy. Neurocomputing (2009)

    Google Scholar 

  8. Chapelle, O., Weston, J., Scholkopf, B.: Cluster kernels for semi-supervised learning. Advances in Neural Information Processing System 15, 585–592 (2003)

    Google Scholar 

  9. Chapelle, O., Weston, J., Scholkopf, B.: Cluster kernels for semi-supervised learning. In: NIPS 15 (2003)

    Google Scholar 

  10. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Scholkopf, B.: Learning with Local and Global Consistency. In: NIPS 16 (2004)

    Google Scholar 

  11. Liu, W.F., Pokharel, P.P., Principe, J.C.: Correntropy: Properties and Applications in Non-Gaussian Signal Processing. IEEE Transactions on Signal Processing 55(11), 5286–5298 (2007)

    Article  MathSciNet  Google Scholar 

  12. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  13. Rockfellar, R.: Convex analysis. Princeton Press, Upper Saddle River (1970)

    Google Scholar 

  14. He, R., Hu, B.G., Yuan, X.T.: Robust discriminant analysis based on nonparametric maximum entropy. In: Asian Conference on Machine Learning (ACML), NanJing, China (2009)

    Google Scholar 

  15. Nikolova, M., Ng, M.K.: Analysis of half-quadratic minimization methods for signal and image recovery. Society for Industrial and Applied Mathematics 27(3), 937–966 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Yang, S.H., Zha, H.Y., Zhou, S.K., Hu, B.G.: Variational graph embedding for globally and locally consistent feature extraction. In: ECML PKDD, pp. 538–553 (2009)

    Google Scholar 

  17. Grandvalet, Y., Bengio, Y.: Entropy Regularization (2006)

    Google Scholar 

  18. Yuan, X.T., Hu, B.G.: Robust feature extraction via information theoretic learning. In: International Conference on Machine Learning, ICML (2009)

    Google Scholar 

  19. He, R., Hu, B.G., Zheng, W.S., Guo, Y.Q.: Two-stage Sparse Representation for Robust Recognition on Large-scale Database. In: Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI-10 (2010)

    Google Scholar 

  20. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples. Journal of Machine Learning Research 7(11), 2399–2434 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, N., Huang, M., He, R., Wang, X. (2010). Robust Semi-supervised Learning for Biometrics. In: Li, K., Fei, M., Jia, L., Irwin, G.W. (eds) Life System Modeling and Intelligent Computing. ICSEE LSMS 2010 2010. Lecture Notes in Computer Science, vol 6328. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15621-2_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15621-2_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15620-5

  • Online ISBN: 978-3-642-15621-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics