Abstract
The traditional space mapping and surgical planning method for surgery are time-consuming, and the accuracy of positioning is not high. This paper aims to present a practical and fast way for planning. In the session of visual orientation for spatial location, MicronTracker camera and self-calibration template are used for positioning; in the session of tracking and locating for four markers on patient and robot’s template, the coordinates of them are extracted automatically; in the session of DICOM medical image processing, the contour of the tumor is extracted automatically, in terms of the seed filling algorithm, contour tracking algorithm and the B-spline fitting function. Coordinates transformation from the image space to the camera space and to the robot space can be completed rapidly and precisely through this method. Experimental results show that the traditional from 25 to 30 minutes planning time for the entire operation can be reduced to 5 minutes; the space mapping accuracy can be improved from the traditional 5mm to 4mm now.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Guizhen, M., Bingchen, M., et al.: Tracking and Locating of Surgical Instrument Using Binocular Vision. Microcomputer Applications 26(2), 181–183 (2005)
Adhami, L., Coste-Maniere, E.: Optimal planning for minimally invasive surgical robots. IEEE Transactions on Robotics and Automation: Special Issue on Medical Robotics, Rainer Konietschke et al. (October 2003)
Cannon, J.W., Stoll, J.A., Selha, S.D., Dupont, P.E., Howe, R.D., Torchiana, D.F.: Port Placement Planning in Robot-Assisted Coronary Artery Bypass. IEEE Transactions on Robotics and Automation: Special Issue on Medical Robotics (October 2003)
Engel, D., Korb, W., Raczkowsky, J., Hassfeld, S., Woern, H.: Location Decision for a Robot Milling Complex Trajectories in Craniofacial Surgery. In: Proceedings of the 17th International Congress and Exhibition, CARS 2003, London, UK (2003)
Weiming, Z., Yannan, Z., et al.: An image analysis system for brain surgery assistant robot. Chinese High Technology Letters 15(4), 33–36 (2005)
Jolesz, F.A., Nabavi, A., Kikinis, R.: Integration of Interventional MRI With Computer-Assisted Surgery. Journal of Magnetic Resonance Imaging 13, 69–77 (2001)
PMcL, B., Moriarty, T., Alexander, E., et al.: Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery 41, 831–843 (1997)
Cleary, K., Member, IEEE, Clifford, M., Stoianovici, D., Freedman, M., Mun, S.K., Watson, V.: Technology Improvements for Image-Guided and Minimally Invasive Spine Procedures. IEEE Transactions on Information Technology in Biomedicine 6(4) (2002)
Feng, P., Wei, W., Yilu, Y., Xinhe, X.: Coordinate Mapping of Brain Surgery Robot System Based on Vision Localization. Journal of Northeastern University (Natural Science) 26(5), 413–416 (2005)
Yangyu, L., Senqiang, Z., Xiangdong, Y., Ken, C.: Mapping Method in Robot-aided Ultrasound-guided Microwave Coagulation Therapy System. China Mechanical Engineering 18(5) (2007)
Can, T.: Reseach on Key Techniques for a Robot system in CT-Guided Minimally Invasive Surgery, Doctoral thesis of Beijing University of Aeronautics and Astronautics (2009)
Dawei, J., Ziran, W.: Modelling of Complex Surface by B-Spline. Aeronautical Computer Technique, 2 (1999)
Hongmei, Z., Yanming, W., et al.: Non-Uniform Rational B-Splines Curve Fitting Based on the Least Control Points. Journal of Xi’an Jiaotong University (1) (2008)
Rongxi, T., Qunsheng, P., Jiaye, W.: Computer Graphics Tutorial. Science Press, Beijing (1990)
Fei, Z., Jinsen, W., Hang, L.: Visual C ++ digital image processing development and programming practice. Electronic Industry Press, Beijing (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cheng, Y., Gong, C., Tang, C., Zhang, J., Cheng, S. (2010). Rapid Planning Method for Robot Assited Minimally Invasive Surgery. In: Li, K., Jia, L., Sun, X., Fei, M., Irwin, G.W. (eds) Life System Modeling and Intelligent Computing. ICSEE LSMS 2010 2010. Lecture Notes in Computer Science(), vol 6330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15615-1_62
Download citation
DOI: https://doi.org/10.1007/978-3-642-15615-1_62
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15614-4
Online ISBN: 978-3-642-15615-1
eBook Packages: Computer ScienceComputer Science (R0)