Abstract
Many works address the problem of object detection by means of machine learning with boosted classifiers. They exploit sliding window search, spanning the whole image: the patches, at all possible positions and sizes, are sent to the classifier. Several methods have been proposed to speed up the search (adding complementary features or using specialized hardware). In this paper we propose a statistical-based search approach for object detection which uses a Monte Carlo sampling approach for estimating the likelihood density function with Gaussian kernels. The estimation relies on a multi-stage strategy where the proposal distribution is progressively refined by taking into account the feedback of the classifier (i.e. its response). For videos, this approach is plugged in a Bayesian-recursive framework which exploits the temporal coherency of the pedestrians. Several tests on both still images and videos on common datasets are provided in order to demonstrate the relevant speedup and the increased localization accuracy with respect to sliding window strategy using a pedestrian classifier based on covariance descriptors and a cascade of Logitboost classifiers.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Viola, P.A., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion and appearance. IJCV 63, 153–161 (2005)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, vol. 1, pp. 886–893 (2005)
Tuzel, O., Porikli, F., Meer, P.: Pedestrian detection via classification on riemannian manifolds. IEEE T-PAMI 30, 1713–1727 (2008)
Lampert, C.H., Blaschko, M.B., Hofmann, T.: Efficient subwindow search: A branch and bound framework for object localization. IEEE T-PAMI 31 (2009)
Tao, J., Odobez, J.M.: Fast human detection from videos using covariance features. In: Workshop on VS at ECCV (2008)
Ess, A., Leibe, B., Schindler, K., van Gool, L.: Robust multiperson tracking from a mobile platform. IEEE T-PAMI 31, 1831–1846 (2009)
Hoiem, D., Efros, A.A., Hebert, M.: Putting objects in perspective. IJCV 80, 3–15 (2008)
Wojek, C., Dorkó, G., Schulz, A., Schiele, B.: Sliding-windows for rapid object class localization: A parallel technique. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 71–81. Springer, Heidelberg (2008)
Lehmann, A., Leibe, B., Van Gool, L.: Feature-centric efficient subwindow search. In: ICCV (2009)
Butko, N., Movellan, J.: Optimal scanning for faster object detection. In: IEEE Conference on CVPR 2009, pp. 2751–2758 (2009)
Zhang, W., Zelinsky, G., Samaras, D.: Real-time accurate object detection using multiple resolutions. In: IEEE Conference on ICCV 2007, pp. 1–8 (2007)
Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE T-PAMI 25, 564–575 (2003)
Han, B., Zhu, Y., Comaniciu, D., Davis, L.S.: Visual tracking by continuous density propagation in sequential bayesian filtering framework. IEEE T-PAMI 31 (2009)
Isard, M., Blake, A.: Condensation - conditional density propagation for visual tracking. IJCV 29, 5–28 (1998)
Hue, C., Le Cadre, J.P., Perez, P.: Tracking multiple objects with particle filtering. IEEE Transactions on Aerospace and Electronic Systems 38, 791–812 (2002)
Isard, M., MacCormick, J.: Bramble: A bayesian multiple-blob tracker. In: ICCV, pp. 34–41 (2001)
Okuma, K., Taleghani, A., de Freitas, N., Little, J.J., Lowe, D.G.: A boosted particle filter: Multitarget detection and tracking. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 28–39. Springer, Heidelberg (2004)
Vermaak, J., Doucet, A., Pérez, P.: Maintaining multi-modality through mixture tracking. In: ICCV, pp. 1110–1116 (2003)
Papageorgiou, C., Poggio, T.: A trainable system for object detection. IJCV 38, 15–33 (2000)
Wojek, C., Schiele, B.: A performance evaluation of single and multi-feature people detection. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 82–91. Springer, Heidelberg (2008)
Sabzmeydani, P., Mori, G.: Detecting pedestrians by learning shapelet features. In: CVPR, pp. 1–8 (2007)
Maji, S., Berg, A.C., Malik, J.: Classification using intersection kernel support vector machines is efficient. In: CVPR, pp. 1–8 (2008)
Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical view of boosting. Annals of Statistics 28, 337–407 (2000)
Babenko, B., Dollár, P., Tu, Z., Belongie, S.: Simultaneous learning and alignment: Multi-instance and multi-pose learning. In: Faces in Real-Life Images (2008)
Han, B., Comaniciu, D., Zhu, Y., Davis, L.: Incremental density approximation and kernel-based bayesian filtering for object tracking. In: CVPR (2004)
Philomin, V., Duraiswami, R., Davis, L.: Quasi-random sampling for condensation. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 134–149. Springer, Heidelberg (2000)
Opelt, A., Pinz, A., Fussenegger, M., Auer, P.: Generic object recognition with boosting. IEEE T-PAMI 28, 416–431 (2006)
Ponce, J., Berg, T., Everingham, M., Forsyth, D., Hebert, M., Lazebnik, S., Marszalek, M., Schmid, C., Russell, C., Torralba, A., Williams, C., Zhang, J., Zisserman, A.: In: Dataset issues in object recognition, pp. 29–48. Springer, Heidelberg (2006)
Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: A benchmark. In: CVPR, pp. 304–311 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gualdi, G., Prati, A., Cucchiara, R. (2010). Multi-stage Sampling with Boosting Cascades for Pedestrian Detection in Images and Videos. In: Daniilidis, K., Maragos, P., Paragios, N. (eds) Computer Vision – ECCV 2010. ECCV 2010. Lecture Notes in Computer Science, vol 6316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15567-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-15567-3_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15566-6
Online ISBN: 978-3-642-15567-3
eBook Packages: Computer ScienceComputer Science (R0)