Abstract
In an object recognition scenario with tens of thousands of categories, even a small number of labels per category leads to a very large number of total labels required. We propose a simple method of label sharing between semantically similar categories. We leverage the WordNet hierarchy to define semantic distance between any two categories and use this semantic distance to share labels. Our approach can be used with any classifier. Experimental results on a range of datasets, upto 80 million images and 75,000 categories in size, show that despite the simplicity of the approach, it leads to significant improvements in performance.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: a large database for non-parametric object and scene recognition. IEEE PAMI 30, 1958–1970 (2008)
Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: Labelme: a database and web-based tool for image annotation. IJCV 77, 157–173 (2008)
van Ahn, L.: The ESP game (2006)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale Hierarchical Image Database. In: CVPR’09 (2009)
Fellbaum, C.: Wordnet: An Electronic Lexical Database. Bradford Books (1998)
Biederman, I.: Recognition-by-components: A theory of human image understanding. Psychological Review 94, 115–147 (1987)
Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report, University of Toronto (2009)
Li, L.J., Wang, G., Fei-Fei, L.: Imagenet. In: CVPR (2007)
Fergus, R., Fei-Fei, L., Perona, P., Zisserman, A.: Learning object categories from google’s image search. In: ICCV, vol. 2, pp. 1816–1823 (2005)
Berg, T., Forsyth, D.: Animals on the web. In: CVPR, pp. 1463–1470 (2006)
Caruana, R.: Multitask learning. Machine Learning 28, 41–75 (1997)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)
Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via ECOCs. JAIR 2, 263–286 (1995)
Torralba, A., Murphy, K., Freeman, W.: Sharing features: efficient boosting procedures for multiclass object detection. In: Proc. of the 2004 IEEE CVPR (2004)
Opelt, A., Pinz, A., Zisserman, A.: Incremental learning of object detectors using a visual shape alphabet. In: CVPR, vol. (1), pp. 3–10 (2006)
Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Transactions on Pattern Analysis and Machine Intelligence (to appear, 2004)
Sudderth, E., Torralba, A., Freeman, W., Willsky, A.: Learning hierarchical models of scenes, objects, and parts. In: Proceedings of the IEEE International Conference on Computer Vision, Beijing (to appear, 2005)
Tenenbaum, J.B., Freeman, W.T.: Separating style and content with bilinear models. Neural Computation 12, 1247–1283 (2000)
Bart, E., Ullman, S.: Cross-generalization: learning novel classes from a single example by feature replacement. In: CVPR (2005)
Miller, E., Matsakis, N., Viola, P.: Learning from one example through shared densities on transforms. In: CVPR, vol. 1, pp. 464–471 (2000)
Quattoni, A., Collins, M., Darrell, T.: Transfer learning for image classification with sparse prototype representations. In: CVPR (2008)
Budanitsky, Hirst: Evaluating wordnet-based measures of lexical semantic relatedness. In: Computational Linguistics (2006)
Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press, Cambridge (2006)
Schoelkopf, B., Smola, A.: Learning with Kernels Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)
Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian fields and harmonic functions. In: ICML, pp. 912–919 (2003)
Fergus, R., Weiss, Y., Torralba, A.: Semi-supervised learning in gigantic image collections. In: NIPS (2009)
Marszalek, M., Schmid, C.: Semantic hierarchies for visual object recognition. In: CVPR (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fergus, R., Bernal, H., Weiss, Y., Torralba, A. (2010). Semantic Label Sharing for Learning with Many Categories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds) Computer Vision – ECCV 2010. ECCV 2010. Lecture Notes in Computer Science, vol 6311. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15549-9_55
Download citation
DOI: https://doi.org/10.1007/978-3-642-15549-9_55
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15548-2
Online ISBN: 978-3-642-15549-9
eBook Packages: Computer ScienceComputer Science (R0)