Single-Stacking Conformity Approach to Reliable Classification | SpringerLink
Skip to main content

Single-Stacking Conformity Approach to Reliable Classification

  • Conference paper
Artificial Intelligence: Methodology, Systems, and Applications (AIMSA 2010)

Abstract

This paper considers the problem of constructing classifiers for road side assistance capable of providing reliability values for classifications of individual instances. In this context we analyze the existing approaches to reliable classification based on the conformity framework [16,18,19,27]. As a result we propose an approach that allows the framework to be applied to any type of classifiers so that the classification-reliability values can be computed for each class. The experiments show that the approach outperforms the existing approaches to reliable classification for road side assistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baskiotis, N., Sebag, M.: C4.5 competence map: a phase transition-inspired approach. In: Proceedings of the 21th International Conference on Machine Learning (ICML 2004), pp. 73–80 (2004)

    Google Scholar 

  2. Bay, S., Pazzani, M.: Characterizing model errors and differences. In: Proceedings of the 17th International Conference on Machine Learning (ICML 2000), pp. 196–201 (2000)

    Google Scholar 

  3. Bosnic, Z., Kononenko, I.: An overview of advances in reliability estimation of individual predictions in machine learning. Intell. Data Anal. 13(2), 385–401 (2009)

    Google Scholar 

  4. Domingos, P., Pazzani, M.: Beyond independence: conditions for the optimality of the simple bayesian classifier. In: Proceedings of the Thirteenth International Conference on Machine Learning (ICML 1996), pp. 105–112. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  5. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley, Chichester (2000)

    Google Scholar 

  6. Fawcett, T.: Roc graphs: Notes and practical considerations for researchers. Tech. Rep. HPL-2003-4, HP Laboratories (2003), http://citeseer.ist.psu.edu/fawcett04roc.html

  7. Ferri, C., Hernndez-Orallo, J.: Cautious classifiers. In: Proceedings of the 1st International Workshop on ROC Analysis in Artificial Intelligence (ROCAI 2004), pp. 27–36 (2004)

    Google Scholar 

  8. Friedel, C., Ruckert, U., Kramer, S.: Cost curves for abstaining classifiers. In: Lachiche, N., Ferri, C., Macskassy, S. (eds.) Proceedings of the ICML 2006 Workshop on ROC Analysis (ROCML 2006), Pittsburgh, USA (June 29, 2006)

    Google Scholar 

  9. Hullermeier, E.: Instance-based prediction with guaranteed confidence. In: Proceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004), pp. 97–101 (2004)

    Google Scholar 

  10. Kaptein, A.: Meta-Classifier Approach to Reliable Text Classification. Master’s thesis, Maastricht University, The Netherlands (2005)

    Google Scholar 

  11. Kukar, M.: Quality assessment of individual classifications in machine learning and data mining. Knowl. Inf. Syst. 9(3), 364–384 (2006)

    Article  Google Scholar 

  12. Perner, P.: Proceedings of 10th Industrial Conference on Data Mining (ICDM 2010), Berlin, Germany. July 12-14, IBaI Report (2010)

    Google Scholar 

  13. Proedru, K., Nouretdinov, I., Vovk, V., Gammerman, A.: Transductive confidence machines for pattern recognition. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 381–390. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  15. Saunders, C., Gammerman, A., Vovk, V.: Transduction with confidence and credibility. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI 1999), pp. 722–726 (1999)

    Google Scholar 

  16. Shafer, G., Vovk, V.: A tutorial on conformal prediction. Journal of Machine Learning Research 9, 371–421 (2008)

    MathSciNet  Google Scholar 

  17. Smirnov, E., Nalbantov, G., Nikolaev, N.: k-Version-space multi-class classification based on k-consistency tests. In: Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2010 (2010) (accepted)

    Google Scholar 

  18. Smirnov, E., Kaptein, A.: Theoretical and experimental study of a meta-typicalness approach for reliable classification. In: Proceedings of the IEEE International Workshop on Reliability Issues in Knowledge Discovery (RIKD 2006), pp. 739–743. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  19. Smirnov, E., Nalbantov, G., Kaptein, A.: Meta-conformity approach to reliable classification. Intell. Data Anal. 13(6), 901–915 (2009)

    Google Scholar 

  20. Smirnov, E., Sprinkhuizen-Kuyper, I., Nalbantov, G., Vanderlooy, S.: Version space support vector machines. In: Proceedings of the 17th European Conference on Artificial Intelligence (ECAI 2006), pp. 809–810 (2006)

    Google Scholar 

  21. Smirnov, E., Sprinkhuizen-Kuyper, I., Nikolaev, N.: Generalizing version space support vector machines for non-separable data. In: Proceedings of the IEEE International Workshop on Reliability Issues in Knowledge Discovery (RIKD 2006), pp. 744–748. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  22. Smirnov, E., Vanderlooy, S., Sprinkhuizen-Kuyper, I.: Meta-typicalness approach to reliable classification. In: Proceedings of the 17th European Conference on Artificial Intelligence (ECAI 2006), pp. 811–812 (2006)

    Google Scholar 

  23. Tzikas, D., Kukar, M., Likas, A.: Transductive reliability estimation for kernel based classifiers. In: Berthold, M.R., Shawe-Taylor, J., Lavrač, N. (eds.) IDA 2007. LNCS, vol. 4723, pp. 37–47. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Vanderlooy, S., Sprinkhuizen-Kuyper, I., Smirnov, E.: An analysis of reliable classifiers through ROC isometrics. In: Lachiche, N., Ferri, C., Macskassy, S. (eds.) Proceedings of the ICML 2006 Workshop on ROC Analysis (ROCML 2006), Pittsburgh, USA, June 29, pp. 55–62 (2006)

    Google Scholar 

  25. Vanderlooy, S., Sprinkhuizen-Kuyper, I., Smirnov, E.: Reliable classifiers in ROC space. In: Saeys, Y., Tsiporkova, E., Baets, B.D., de Peer, Y.V. (eds.) Proceedings of the 15th Annual Machine Learning Conference of Belgium and the Netherlands (BENELEARN 2006), Ghent, Belgium, May 11-22, pp. 113–120 (2006)

    Google Scholar 

  26. Vapnik, V.: Statistical Learning Theory. John Wiley, NY (1998)

    MATH  Google Scholar 

  27. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  28. Wolpert, D.: Stacked generalization. Neural Networks 5, 241–260 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smirnov, E., Nikolaev, N., Nalbantov, G. (2010). Single-Stacking Conformity Approach to Reliable Classification. In: Dicheva, D., Dochev, D. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2010. Lecture Notes in Computer Science(), vol 6304. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15431-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15431-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15430-0

  • Online ISBN: 978-3-642-15431-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics