Abstract
This paper addresses the co-channel cell interference (CCI) mitigation in multi-cell OFDMA systems through cooperative relaying and frequency reuse partitioning. In the considered system, each cell is divided into two regions: the central region and the edge region. The frequency reuse factor (FRF) is set to 1 in the central region and fractional reuse factors of 7/3 or 7/4 are used in the edge region by dividing it respectively into three or four sectors. A fixed relay station (RS) by sector, which amplifies and forwards the received signal to the mobile, is placed at the border base station side of the central region. Simulation results are used to show the improvement of the proposed cooperative scheme compared to the performance of similar architecture without relays.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pischella, M., Belfiore, J.-C.: Achieving a Frequency Reuse Factor of 1 in OFDMA cellular Networks with cooperative Communications. In: IEEE Vehicular Technology Conference, VTC 2008, May 11-14, pp. 653–657 (Spring 2008)
Liang, M., Liu, F., Chen, Z., Wang, Y.F., Yang, D.C.: A Novel Frequency Reuse Scheme for OFDMA Based Relay Enhanced Cellular Networks. In: IEEE Vehicular Technology Conference, VTC 2009, April 26-29, pp. 1–5 (Spring 2009)
Lei, H., Zhang, X., Yang, D.: A Novel Frequency Reuse Scheme for Multi-Cell OFDMA Systems. In: IEEE Vehicular Technology Conference, VTC 2007, pp. 347–351 (Fall, September-October 2007)
Najjar, A., Hamdi, N., Bouallegue, A.: Efficient Frequency Reuse Scheme For Multi-cell OFDMA Systems. In: IEEE Symposium on Computers and Communications, ISCC 2009, Tunisia, July 5-8 (2009)
Kim, C.S., Bahk, S., Choi, Y.-J.: Flexible Design of Frequency Reuse Factor in OFDMA Cellular Networks. In: IEEE International Conference on Communication, ICC 2006, vol. 4, pp. 1784–1788 (June 2006)
Najjar, A., Hamdi, N., Bouallegue, A.: Fractional Frequency Reuse Scheme with Two and Three regions For Multi-cell OFDMA Systems. In: 17th Telecommunication forum Telfor 2009, Serbia, Belgrade, November 24-26 (2009)
Slimane, S.B., Zhouand, B., Li, X.: Delay Optimization in Cooperative Relaying with Cyclic Delay Diversity. In: IEEE International Conference on Communication, ICC 2008, May 19-23, pp. 3553–3557 (2008)
Pott, A., Kumar, P., Hellesth, T., Jungnickel, D.: Difference sets, Sequences and their Correlation Properties. Kluwer Academic Publishers, Dordrecht (1998)
Nabar, R.U., Bolcskei, H., Kneubuhler, F.W.: Fading relay channels: performance limites and space-time signal design. IEEE Journals on Sel. Areas in Telecommun. 22(6), 1099–1109 (2004)
European Cooperative in the Field of Science and Technical Research EURO-COST 231. Urban transmission loss models for mobile radio in the 900 and 1800 MHZ bands (Revision 2) In: The Hague, the Netherlands (September 1991), http://www.lx.it.pt/cost231/final-report.htm
Kim, H., Kim, K., Han, Y., Yun, S.: A proportional fair scheduling for multicarrier transmission systems. In: Vehicular Technologie Conference, VTC 2004, September 26-29, vol. 1, pp. 409–413 (Fall 2004)
Seo, H., Lee, B.G.: A proportional-fair power allocation scheme for fair and efficient multiuser OFDM systems. In: IEEE Globecom 2004, vol. 6, pp. 3737–3741 (December 2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Najjar, A., Hamdi, N., Bouallegue, A. (2010). Fractional Frequency Reuse Scheme in Cooperative Relaying For Multi-cell OFDMA Systems. In: Vinel, A., Bellalta, B., Sacchi, C., Lyakhov, A., Telek, M., Oliver, M. (eds) Multiple Access Communications. MACOM 2010. Lecture Notes in Computer Science, vol 6235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15428-7_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-15428-7_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15427-0
Online ISBN: 978-3-642-15428-7
eBook Packages: Computer ScienceComputer Science (R0)