Abstract
Coupling constraints and ordinary differential equations has numerous applications. This paper shows how to introduce constraints involving ordinary differential equations into the numerical constraint satisfaction problem framework in a natural and efficient way. Slightly adapted standard filtering algorithms proposed in the numerical constraint satisfaction problem framework are applied to these constraints leading to a branch and prune algorithm that handles ordinary differential equations based constraints. Preliminary experiments are presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Raïssi, T., Ramdani, N., Candau, Y.: Set membership state and parameter estimation for systems described by nonlinear differential equations. Automatica 40(10), 1771–1777 (2004)
Granvilliers, L., Cruz, J., Barahona, P.: Parameter estimation using interval computations. SIAM J. Sci. Comput. 26(2), 591–612 (2005)
Kapela, T., Simó, C.: Computer assisted proofs for nonsymmetric planar choreographies and for stability of the eight. Nonlinearity 20(5), 1241 (2007)
Lin, Y., Stadtherr, M.A.: Guaranteed state and parameter estimation for nonlinear continuous-time systems with bounded-error measurements. Industrial & Engineering Chemistry Research 46(22), 7198–7207 (2007)
Johnson, T., Tucker, W.: Brief paper: Rigorous parameter reconstruction for differential equations with noisy data. Automatica 44(9), 2422–2426 (2008)
Lin, Y., Enszer, J.A., Stadtherr, M.A.: Enclosing all solutions of two-point boundary value problems for odes. Computers & Chemical Engineering 32(8), 1714–1725 (2008)
Cruz, J., Barahona, P.: Constraint Satisfaction Differential Problems. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 259–273. Springer, Heidelberg (2003)
Cruz, J., Barahona, P.: Constraint reasoning in deep biomedical models. Artificial Intelligence in Medicine 34(1), 77–88 (2005)
Moore, R.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)
Neumaier, A.: Interval Methods for Systems of Equations. Cambridge Univ. Press, Cambridge (1990)
Benhamou, F., Older, W.: Applying Interval Arithmetic to Real, Integer and Boolean Constraints. Journal of Logic Programming 32(1), 1–24 (1997)
Van Hentenryck, P., McAllester, D., Kapur, D.: Solving polynomial systems using a branch and prune approach. SIAM J. Numer. Anal. 34(2), 797–827 (1997)
Granvilliers, L.: A symbolic-numerical branch and prune algorithm for solving non-linear polynomial systems. Journal of Universal Computer Science 4(2), 125–146 (1998)
Goldsztejn, A., Goualard, F.: Box Consistency through Adaptive Shaving. In: Proc. of ACM SAC 2010, pp. 2049–2054 (2010)
Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Springer, Heidelberg (2000)
Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated Solutions of Initial Value Problems for Ordinary Differential Equations. Applied Mathematics and Computation 105(1), 21–68 (1999)
Janssen, M., Deville, Y., Hentenryck, P.V.: Multistep filtering operators for ordinary differential equations. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 246–260. Springer, Heidelberg (1999)
Zgliczynski, P.: C1-Lohner Algorithm. Foundations of Computational Mathematics 2(4), 429–465 (2002)
Goldsztejn, A., Hayes, W.: Reliable Inner Approximation of the Solution Set to Initial Value Problems with Uncertain Initial Value. In: Proceedings of SCAN 2006, p. 19. IEEE Press, Los Alamitos (2006)
Goldsztejn, A., Michel, C., Rueher, M.: Efficient Handling of Universally Quantified Inequalities. Constraints 14(1), 117–135 (2008)
Goldsztejn, A., Granvilliers, L.: A New Framework for Sharp and Efficient Resolution of NCSP with Manifolds of Solutionss. Constraints 15(2), 190–212 (2010)
Eveillard, D., Ropers, D., de Jong, H., Branlant, C., Bockmayr, A.: A multi-scale constraint programming model of alternative splicing regulation. Theor. Comput. Sci. 325(1), 3–24 (2004)
Carlson, B., Gupta, V.: Hybrid cc with interval constraints. In: HSCC 1998: Proceedings of the First International Workshop on Hybrid Systems, pp. 80–95 (1998)
Gupta, V., Jagadeesan, R., Saraswat, V.A.: Computing with continuous change. Sci. Comput. Program. 30(1-2), 3–49 (1998)
Kuzmic, P.: Program DYNAFIT for the Analysis of Enzyme Kinetic Data: Application to HIV Proteinase. Analytical Biochemistry 237(2), 260–273 (1996)
Mendes, P., Kell, D.: Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14(10), 869–883 (1998)
Lin, Y., Stadtherr, M.A.: Validated solutions of initial value problems for parametric odes. Applied Numerical Mathematics 57(10), 1145–1162 (2007)
Hlavácek, V., Marek, M., Kubícek, M.: Modelling of chemical reactors – X multiple solutions of enthalpy and mass balances for a catalytic reaction within a porous catalyst particle. Chemical Engineering Science 23(9), 1083–1097 (1968)
Chen, Y.: Dynamic systems optimization. Ph. D. Thesis, University of California (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Goldsztejn, A., Mullier, O., Eveillard, D., Hosobe, H. (2010). Including Ordinary Differential Equations Based Constraints in the Standard CP Framework. In: Cohen, D. (eds) Principles and Practice of Constraint Programming – CP 2010. CP 2010. Lecture Notes in Computer Science, vol 6308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15396-9_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-15396-9_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15395-2
Online ISBN: 978-3-642-15396-9
eBook Packages: Computer ScienceComputer Science (R0)