Mean-Payoff Automaton Expressions | SpringerLink
Skip to main content

Mean-Payoff Automaton Expressions

  • Conference paper
CONCUR 2010 - Concurrency Theory (CONCUR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6269))

Included in the following conference series:

Abstract

Quantitative languages are an extension of boolean languages that assign to each word a real number. Mean-payoff automata are finite automata with numerical weights on transitions that assign to each infinite path the long-run average of the transition weights. When the mode of branching of the automaton is deterministic, nondeterministic, or alternating, the corresponding class of quantitative languages is not robust as it is not closed under the pointwise operations of max, min, sum, and numerical complement. Nondeterministic and alternating mean-payoff automata are not decidable either, as the quantitative generalization of the problems of universality and language inclusion is undecidable.

We introduce a new class of quantitative languages, defined by mean-payoff automaton expressions, which is robust and decidable: it is closed under the four pointwise operations, and we show that all decision problems are decidable for this class. Mean-payoff automaton expressions subsume deterministic mean-payoff automata, and we show that they have expressive power incomparable to nondeterministic and alternating mean-payoff automata. We also present for the first time an algorithm to compute distance between two quantitative languages, and in our case the quantitative languages are given as mean-payoff automaton expressions.

This research was supported by EPFL, IST Austria, LSV@ENS Cachan & CNRS, and the following grants: the European Union project COMBEST, the European Network of Excellence ArtistDesign, the DARPA grant HR0011-05-1-0057, and the NSF grant DBI-0820624.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Degorre, A., Maler, O., Weiss, G.: On omega-languages defined by mean-payoff conditions. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 333–347. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Bojanczyk, M.: Beyond omega-regular languages. In: Proc. of STACS. LIPIcs, vol. 3. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2010)

    Google Scholar 

  3. Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T.A., Rannou, P.: Mean-payoff automaton expressions. CoRR, abs/1006.1492 (2010)

    Google Scholar 

  4. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Chatterjee, K., Doyen, L., Henzinger, T.A.: Alternating weighted automata. In: Gȩbala, M. (ed.) FCT 2009. LNCS, vol. 5699, pp. 3–13. Springer, Heidelberg (2009)

    Google Scholar 

  6. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties for quantitative languages. In: Proc. of LICS, pp. 199–208. IEEE, Los Alamitos (2009)

    Google Scholar 

  7. Chatterjee, K., Ghosal, A., Henzinger, T.A., Iercan, D., Kirsch, C., Pinello, C., Sangiovanni-Vincentelli, A.: Logical reliability of interacting real-time tasks. In: Proc. of DATE, pp. 909–914. ACM, New York (2008)

    Chapter  Google Scholar 

  8. de Alfaro, L.: How to specify and verify the long-run average behavior of probabilistic systems. In: Proc. of LICS, pp. 454–465. IEEE, Los Alamitos (1998)

    Google Scholar 

  9. de Alfaro, L., Majumdar, R., Raman, V., Stoelinga, M.: Game relations and metrics. In: Proc. of LICS, pp. 99–108. IEEE, Los Alamitos (2007)

    Google Scholar 

  10. Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., Toruńczyk, S.: Energy and mean-payoff games with imperfect information. In: Proc. of CSL. LNCS, Springer, Heidelberg (to appear, 2010)

    Google Scholar 

  11. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labeled markov systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 258–273. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput. Sci. 380(1-2), 69–86 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  14. Droste, M., Kuske, D.: Skew and infinitary formal power series. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 426–438. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. Journal of Game Theory 8(2), 109–113 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kupferman, O., Lustig, Y.: Lattice automata. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 199–213. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Rabin, M.O.: Probabilistic automata. Information and Control 6(3), 230–245 (1963)

    Article  Google Scholar 

  18. Schützenberger, M.P.: On the definition of a family of automata. Information and Control 4(2-3), 245–270 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  19. Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco, R.C.: Probabilistic finite-state machines-part I. IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1013–1025 (2005)

    Article  Google Scholar 

  20. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput. Sci. 158(1&2), 343–359 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T.A., Rannou, P. (2010). Mean-Payoff Automaton Expressions. In: Gastin, P., Laroussinie, F. (eds) CONCUR 2010 - Concurrency Theory. CONCUR 2010. Lecture Notes in Computer Science, vol 6269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15375-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15375-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15374-7

  • Online ISBN: 978-3-642-15375-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics