Abstract
Quantitative languages are an extension of boolean languages that assign to each word a real number. Mean-payoff automata are finite automata with numerical weights on transitions that assign to each infinite path the long-run average of the transition weights. When the mode of branching of the automaton is deterministic, nondeterministic, or alternating, the corresponding class of quantitative languages is not robust as it is not closed under the pointwise operations of max, min, sum, and numerical complement. Nondeterministic and alternating mean-payoff automata are not decidable either, as the quantitative generalization of the problems of universality and language inclusion is undecidable.
We introduce a new class of quantitative languages, defined by mean-payoff automaton expressions, which is robust and decidable: it is closed under the four pointwise operations, and we show that all decision problems are decidable for this class. Mean-payoff automaton expressions subsume deterministic mean-payoff automata, and we show that they have expressive power incomparable to nondeterministic and alternating mean-payoff automata. We also present for the first time an algorithm to compute distance between two quantitative languages, and in our case the quantitative languages are given as mean-payoff automaton expressions.
This research was supported by EPFL, IST Austria, LSV@ENS Cachan & CNRS, and the following grants: the European Union project COMBEST, the European Network of Excellence ArtistDesign, the DARPA grant HR0011-05-1-0057, and the NSF grant DBI-0820624.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Degorre, A., Maler, O., Weiss, G.: On omega-languages defined by mean-payoff conditions. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 333–347. Springer, Heidelberg (2009)
Bojanczyk, M.: Beyond omega-regular languages. In: Proc. of STACS. LIPIcs, vol. 3. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2010)
Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T.A., Rannou, P.: Mean-payoff automaton expressions. CoRR, abs/1006.1492 (2010)
Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidelberg (2008)
Chatterjee, K., Doyen, L., Henzinger, T.A.: Alternating weighted automata. In: Gȩbala, M. (ed.) FCT 2009. LNCS, vol. 5699, pp. 3–13. Springer, Heidelberg (2009)
Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties for quantitative languages. In: Proc. of LICS, pp. 199–208. IEEE, Los Alamitos (2009)
Chatterjee, K., Ghosal, A., Henzinger, T.A., Iercan, D., Kirsch, C., Pinello, C., Sangiovanni-Vincentelli, A.: Logical reliability of interacting real-time tasks. In: Proc. of DATE, pp. 909–914. ACM, New York (2008)
de Alfaro, L.: How to specify and verify the long-run average behavior of probabilistic systems. In: Proc. of LICS, pp. 454–465. IEEE, Los Alamitos (1998)
de Alfaro, L., Majumdar, R., Raman, V., Stoelinga, M.: Game relations and metrics. In: Proc. of LICS, pp. 99–108. IEEE, Los Alamitos (2007)
Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., Toruńczyk, S.: Energy and mean-payoff games with imperfect information. In: Proc. of CSL. LNCS, Springer, Heidelberg (to appear, 2010)
Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labeled markov systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 258–273. Springer, Heidelberg (1999)
Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput. Sci. 380(1-2), 69–86 (2007)
Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer, Heidelberg (2009)
Droste, M., Kuske, D.: Skew and infinitary formal power series. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 426–438. Springer, Heidelberg (2003)
Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. Journal of Game Theory 8(2), 109–113 (1979)
Kupferman, O., Lustig, Y.: Lattice automata. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 199–213. Springer, Heidelberg (2007)
Rabin, M.O.: Probabilistic automata. Information and Control 6(3), 230–245 (1963)
Schützenberger, M.P.: On the definition of a family of automata. Information and Control 4(2-3), 245–270 (1961)
Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco, R.C.: Probabilistic finite-state machines-part I. IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1013–1025 (2005)
Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput. Sci. 158(1&2), 343–359 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T.A., Rannou, P. (2010). Mean-Payoff Automaton Expressions. In: Gastin, P., Laroussinie, F. (eds) CONCUR 2010 - Concurrency Theory. CONCUR 2010. Lecture Notes in Computer Science, vol 6269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15375-4_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-15375-4_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15374-7
Online ISBN: 978-3-642-15375-4
eBook Packages: Computer ScienceComputer Science (R0)