Emergence of an Internal Model in Evolving Robots Subjected to Sensory Deprivation | SpringerLink
Skip to main content

Emergence of an Internal Model in Evolving Robots Subjected to Sensory Deprivation

  • Conference paper
From Animals to Animats 11 (SAB 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6226))

Included in the following conference series:

Abstract

In this study we show how simulated robots evolved to display a navigation skills can spontaneously develop an internal model and rely on it to complete their task when sensory stimulation is temporarily unavailable. The analysis of some of the best evolved agents indicates that their internal model operates by anticipating functional properties of the next sensory state rather than the exact state that sensors would have assumed. The characteristics of the states that are anticipated and of the sensory-motor rules that determine how the agents react to the experienced states, however, ensure that the agents produce very similar behaviour during normal and blind phases in which sensory stimulation is available or is self-generated by the agent itself, respectively. The characteristics of the agents’ internal models also ensure an effective transition during the phases in which agents’ internal dynamics is decoupled and re-coupled with the sensory-motor flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Craik, K.: The Nature of Explanation. Cambridge University Press, Cambridge (1943)

    Google Scholar 

  2. Tolman, E.C.: Cognitive maps in rats and men. Psychological Review 55, 189–208 (1948)

    Article  Google Scholar 

  3. Johnson-Laird, P.: Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness. Cambridge University Press/Harvard University Press, Cambridge (1983)

    Google Scholar 

  4. Brooks, R.A.: Intelligence without representation. Artificial Intelligence 47(47), 139–159 (1991)

    Article  Google Scholar 

  5. Kawato, M.: Internal models for motor control and trajectory planning. Current Opinion in Neurobiology 9, 718–727 (1999)

    Article  Google Scholar 

  6. Wolpert, D.M., Gharamani, Z., Jordan, M.: An internal model for sensorimotor integration. Science 269, 1179–1182 (1995)

    Article  Google Scholar 

  7. Clark, A., Grush, R.: Towards a cognitive robotics. Adaptive Behavior 7(1), 5–16 (1999)

    Article  Google Scholar 

  8. Frith, C.: Making up the Mind. In: How the Brain Creates our Mental World. Blackwell, Malden (2007)

    Google Scholar 

  9. Grush, R.: The emulation theory of representation: motor control, imagery, and perception. Behavioral and Brain Sciences 27(3), 377–396 (2004)

    Google Scholar 

  10. Jeannerod, M.: Neural simulation of action: A unifying mechanism for motor cognition. NeuroImage 14, S103–S109 (2001)

    Article  Google Scholar 

  11. Jeannerod, M.: Motor Cognition. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  12. Pezzulo, G., Castelfranchi, C.: The symbol detachment problem. Cognitive Processing 8(2), 115–131 (2007)

    Article  Google Scholar 

  13. Wolpert, D.M., Doya, K., Kawato, M.: A unifying computational framework for motor control and social interaction. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358(1431), 593–602 (2003)

    Article  Google Scholar 

  14. Wolpert, D., Miall, C., Kawato, M.: Internal models in the cerebellum. Trends Cogn. Sci. 2, 338–347 (1998)

    Article  Google Scholar 

  15. Lee, D.N., Thompson, J.A.: Vision in action: the control of locomotion. In: Ingle, D.J., Goodale, M.A., Manfield, R.J.W. (eds.) Analysis of Visual Behavior, pp. 411–433. MIT, Cambridge (1982)

    Google Scholar 

  16. Ziemke, T., Jirenhed, D.A., Hesslow, G.: Blind adaptive behavior based on internal simulation of perception. Technical Report HS-IDA-TR-02-001, Department of Computer Science (School of Humanities & Informatics), University of Skovde, Sweden (2002)

    Google Scholar 

  17. Ziemke, T., Jirenhed, D.A., Hesslow, G.: Internal simulation of perception: a minimal neuro-robotic model. Neurocomputing 68, 85–104 (2005)

    Article  Google Scholar 

  18. Alnajjar, F., Hafiz, A.R., Zin, I.B.M., Murase, K.: Vision-motor abstraction toward robot cognition. In: Leung, C., Chan, J. (eds.) ICONIP 2009, Part II. LNCS, vol. 5864, pp. 65–74. Springer, Heidelberg (2009)

    Google Scholar 

  19. Johnsson, M., Balkenius, C., Hesslow, G.: Neural network architecture for crossmodal activation and perceptual sequences. Papers from the AAAI Fall Symposium (Biologically Inspired Cognitive Architectures), Arlington, Virginia, USA, pp. 85–86 (2009)

    Google Scholar 

  20. Linker, F., Niklasson, L.: Extraction and inversion of abstract sensory flow representations. In: Proceedings of the Sixth international Conference on Simulation of Adaptive Behavior, From Animals to Animates, vol. 6, pp. 199–208. MIT Press, Cambridge (2000)

    Google Scholar 

  21. Manoonpong, P., Wrgtter, F.: Efference copies in neural control of dynamic biped walking. Robotics and Autonomous Systems 57, 1140–1153 (2009)

    Article  Google Scholar 

  22. Pezzulo, G.: A study of off-line uses of anticipation. In: Asada, M., Tani, J., Hallam, J., Meyer, J.A. (eds.) SAB 2008. LNCS (LNAI), vol. 5040, pp. 372–382. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Svensson, H., Morse, A., Ziemke, T.: Representation as internal simulation: A minimalistic robotic model. In: COGSCI (2009)

    Google Scholar 

  24. Gigliotta, O., Nolfi, S.: On the coupling between agent internal and agent/ environmental dynamics: Development of spatial representations in evolving autonomous robots. Adaptive Behavior 16(2-3), 148–165 (2008)

    Article  Google Scholar 

  25. Nolfi, S., Floreano, D.: Evolutionary Robotics. MIT Press, Cambridge (2000)

    Google Scholar 

  26. Hesslow, G.: Conscious thought as simulation of behaviour and perception. Trends in Cognitive Sciences 6, 242–247 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gigliotta, O., Pezzulo, G., Nolfi, S. (2010). Emergence of an Internal Model in Evolving Robots Subjected to Sensory Deprivation. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, JA., Mouret, JB. (eds) From Animals to Animats 11. SAB 2010. Lecture Notes in Computer Science(), vol 6226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15193-4_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15193-4_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15192-7

  • Online ISBN: 978-3-642-15193-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics