Abstract
A comparative study of type-2 fuzzy inference systems optimization as an integration method of Modular Neural Networks (MNNs) is presented. The optimization method for type-2 fuzzy systems is based on the footprint of uncertainty (FOU) of the membership functions. We use different benchmark problems to test the optimization method for the fuzzy systems. First, we tested the methodology by manually incrementing the percentage in the FOU, later we apply a Genetic Algorithm to find the optimal type-2 fuzzy system. We show the comparative results obtained for the benchmark problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alvarado-Verdugo, J.M.: Reconocimiento de la persona por medio de su rostro y huella utilizando redes neuronales modulares y la transformada wavelet, Instituto Tecnológico de Tijuana (2006)
Ross, A.A., Nandakumar, K., Jain, A.K.: Handbook of Multibiometrics. Springer, Heidelberg (2006)
Castro, J.R.: Tutorial Type-2 Fuzzy Logic: theory and applications., Universidad Autónoma de Baja California-Instituto Tecnológico de Tijuana (October 9, 2006), http://www.hafsamx.org/cis-chmexico/seminar06/tutorial.pdf
Chen, K., Wang, L.: Trends in Neural Computation. Studies in Computational Intelligence, vol. 35, pp. 339–341. Springer, Heidelberg
Cordón, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic Fuzzy systems, Evolutionary Tuning and learning of Fuzzy Knowledge Bases. In: Advances in Fuzzy Systems-Applications and Theory, vol. 19. World Scientific, Singapore
Hidalgo, D., Melin, P., Castillo, O.: Type-1 and Type-2 Fuzzy Inference Systems as Integration Methods in Modular Neural Networks for Multimodal Biometry and its Optimization with Genetic Algorithms. Journal of Automation, Mobile Robotics & Intelligent Systems 2(1) (2008) ISSN 1897-8649
Hidalgo, D., Castillo, O., Melin, P.: Interval type-2 fuzzy inference systems as integration methods in modular neural networks for multimodal biometry and its optimization with genetic algorithms. International Journal of Biometrics 1(1), 114–128 (2008)
Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing, A Computational Approach to Learning and Machine Intelligence. Prentice Hall, Englewood Cliffs (1997)
Karnik, N., Mendel, J.M.: Operations on type-2 fuzzy sets. Signal and Image Processing Institute, Department of Electrical Engineering-Systems. University of Southern California, Los Angeles (2000)
Man, K.F., Tang, K.S., Kwong, S.: Genetic Algorithms, Concepts and Designs. Springer, Heidelberg (1999)
Melin, P., Castillo, O.: Hybrid Intelligent Systems for Pattern Recognition Using Soft Computing: An Evolutionary Approach for Neural Networks and Fuzzy Systems. Studies in Fuzziness and Soft Computing (Hardcover - April 29, 2005)
Melin, P., Castillo, O., Gómez, E., Kacprzyk, J., Pedrycz, W.: Analysis and Design of Intelligent Systems Using Soft Computing Techniques. In: Advances in Soft Computing, vol. 41. Springer, Heidelberg (2007)
Melin, P., Castillo, O., Gómez, E., Kacprzyk, J.: Analysis and Design of Intelligent Systems using Soft Computing Techniques. In: Advances in Soft Computing (Hardcover - July 11, 2007)
Mendel, J.M.: UNCERTAIN Rule-Based Fuzzy Logic Systems, Introduction and New Directions. Prentice Hall, Englewood Cliffs (2001)
Mendel, J.M.: Uncertainty: General Discussions, Article is provided courtesy of Prentice Hall, By Jerry Mendel, May 11 (2001), http://www.informit.com/articles/article.asp?p=21313
Mendel, J.M.: Why We Need Type-2 Fuzzy Logic Sys-tems? Article provided courtesy of Prentice Hall, By Jerry Mendel, May 11 (2001), http://www.informit.com/articles/article.asp?p=21312&rl=1
Mendel, J.M., Bob-John, R.I.: Type-2 Fuzzy Sets Made Simple. IEEE Transactions on Fuzzy Systems 10(2) (April 2002)
Mendoza, O., Melin, P., Castillo, O., Licea, P.: Type-2 Fuzzy Logic for Improving Training Data and Response Integration in Modular Neural Networks for Image Recognition. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, pp. 604–612. Springer, Heidelberg (2007)
Mendoza, O., Melin, P., Castillo, O., Licea, P.: Modular Neural Networks and Type-2 Fuzzy Lo- gic for Face Recognition. In: Reformat, M. (ed.) Proceedings of NAFIPS 2007, San Diego, June 2007, vol. (1), IEEE, Los Alamitos (2007) (pages CD Rom)
Ramos-Gaxiola, J.: Redes Neuronales Aplicadas a la Identificación de Locutor Mediante Voz Uti lizando Extracción de Características., Instituto Tecnológico de Tijuana (2006)
Urias, J., Hidalgo, D., Melin, P., Castillo, O.: A Method for Response Integration in Modular Neural Networks with Type-2 Fuzzy Logic for Biometric Systems. In: Melin, P., et al. (eds.) Analysis and Design of Intelligent Systems using Soft Computing Techniques, 1st edn. Studies in Fuzziness and Soft Computing, vol. 1(1), pp. 5–15. Springer, Germany (2007)
Urias, J., Melin, P., Castillo, O.: A Method for Response Integration in Modular Neural Networks using Interval Type-2 Fuzzy Logic. In: FUZZ-IEEE 2007, London, UK, July 2007. FUZZ, vol. (1), pp. 247–252. IEEE, Los Alamitos (2007)
Urias, J., Hidalgo, D., Melin, P., Castillo, O.: A New Method for Response Integration in Modular Neural Networks Using Type-2 Fuzzy Logic for Biometric Systems. In: The 2007 Inter- national Joint Conference on Neural Networks, IJCNN 2007 Conference Proceedings, Orlando, Florida, USA, August 12-17. IEEE, Los Alamitos (2007)
Zadeh, L.A.: Fuzzy Logic = Computing with Words. IEEE Transactions on Fuzzy Systems 4(2), 103 (1996)
Zadeh, L.A.: Knowledge representation in Fuzzy Logic. IEEE Transactions on knowledge data engineering 1, 89 (1989)
Zadeh, L.A.: Fuzzy Logic. Computer 1(4), 83–93 (1998)
Zadeh, L.A.: Soft Computing and Fuzzy Logic. IEEE Software 11(6), 48–56 (1994)
Zadeh, L.A., Bernadette, B.M., Ronald, R.Y.: Fuzzy Logic and Soft Computing. In: Advances in Fuzzy Systems-Applications and Theory, Septiembre 1995, vol. 4 (1995), ISBN:978-981-02-2345-8, 981-02-2345-5
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Hidalgo, D., Melin, P., Castillo, O., Licea, G. (2010). Comparative Study of Type-2 Fuzzy Inference System Optimization Based on the Uncertainty of Membership Functions. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Soft Computing for Recognition Based on Biometrics. Studies in Computational Intelligence, vol 312. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15111-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-15111-8_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15110-1
Online ISBN: 978-3-642-15111-8
eBook Packages: EngineeringEngineering (R0)