Comparative Study of Feature Extraction Methods of Fuzzy Logic Type 1 and Type-2 for Pattern Recognition System Based on the Mean Pixels | SpringerLink
Skip to main content

Comparative Study of Feature Extraction Methods of Fuzzy Logic Type 1 and Type-2 for Pattern Recognition System Based on the Mean Pixels

  • Chapter
Soft Computing for Recognition Based on Biometrics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 312))

Abstract

We describe in this paper a new approach for features extraction methods with Type-1 and Type-2 for Pattern Recognition System based on the pixels mean. In this paper we consider pattern recognition with extraction features fuzzy logic for ensemble neural networks for the case of fingerprintsn and using response integration fuzzy logic method to the test proposed method of fuzzy extraction method. An ensemble neural network of three modules is used. Each module is a local expert on person recognition based on their biometric measure (Pattern recognition for fingerprints). The fuzzy extraction features method is based on the pixels mean of the fingerprint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sharkey, A.C.: Modularity, combining and artificial neural nets. Connection Science 8, 299–313 (1996)

    Article  Google Scholar 

  2. Castiello, C., Castellano, G., Caponetti, L., Fanelli, A.M.: Fuzzy classification of image pixels, Intelligent Signal Processing. In: 2003 IEEE International Symposium on Digital Object Identifier, September 4-6, pp. 79–82 (2003), doi:10.1109/ISP.2003.1275817

    Google Scholar 

  3. Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K.: FVC2004: Third Fingerprint Verification Competition. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 1–7. Springer, Heidelberg (2004)

    Google Scholar 

  4. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: The full FVC2000 and FVC2002 databases are available in the DVD included in: Handbook of Fingerprint Recognition. Springer, New York (2003)

    Google Scholar 

  5. Opitz, D.W., Shavlik, J.W.: Generating accurate and diverse members of a neural network ensemble. In: Touretzky, D.S., Mozer, M., Hasselmo, M. (eds.) Advances in Neural Information Processing Systems, vol. 8, pp. 535–541. MIT Press, Cambridge (1996)

    Google Scholar 

  6. Opitz, D.W., Maclin, R.: Popular Ensemble Methods: An Empirical Study. Journal of Artificial Intelligence Research 11, 169–198 (1999)

    MATH  Google Scholar 

  7. Opitz, D.W.: Feature Selection for Ensembles. In: Sixteenth National Conference on Artificial/ Intelligence (AAAI), Orlando, FL, pp. 379–384 (1999)

    Google Scholar 

  8. Hoffmann, F.: Evolutionary Algorithms for Fuzzy Control System Design. In: Proceedings of the IEEE, special issue on Industrial Applications of Soft Computing (to appear October 2001)

    Google Scholar 

  9. Nemmour, H., Chibani, Y.: Neural Network Combination by Fuzzy Integral for Robust Change Detection in Remotely Sensed Imagery. EURASIP Journal on Applied Signal Processing 14, 2187–2195 (2005)

    Google Scholar 

  10. Tizhoosh, H.R., Michaelis, B., Guericke, O.V.: Image Enhancement Based on Fuzzy Aggregation techniques. Published in Proceedings of 16th IEEE IMTC 1999, Venice, Italy, vol. 3, pp. 1813–1817 (1999)

    Google Scholar 

  11. Kim, J., Peli, E.: MPEG based image enhancement for people with low vision, Soc for Information Display, Digest of Technical Papers, pp. 1156–1159 (2003)

    Google Scholar 

  12. Castro, J.R., Castillo, O., Melin, P.: An Interval Type-2 Fuzzy Logic Toolbox for Control Applications. In: Proc. FUZZ-IEEE 2007 (2007)

    Google Scholar 

  13. Castro, J.R., Castillo, O., Melin, P., Martinez, L.G., Escobar, S., Camacho, I.: Building Fuzzy Inference Systems with Interval Type-2 Fuzzy Logic Toolbox, 1st edn. Studies in Fuzziness and Soft Computing, vol. 6(1), pp. 53–62. Springer, Heidelberg (2007)

    Google Scholar 

  14. Tang, J.: A contrast based image fusion technique in the DCT domain. Digital Signal Processing 14(3), 218–226 (2004)

    Article  Google Scholar 

  15. Tang, J., Peli, E., Actonm, S.: Image enhancement using a contrast measure in the compressed domain. IEEE Signal Processing Letters 10(10), 289–292 (2003)

    Article  Google Scholar 

  16. Urias, J., Solano, D., Soto, M., Lopez, M., Melin P.: Type-2 Fuzzy Logic as a Method of Response Integration in Modular Neural Networks. In: IC-AI 2006, pp. 584–590 (2006)

    Google Scholar 

  17. Leu, J.G.: Image contrast enhancement based on the intensities of edge pixels. CVGIP: Graphical Models and Image Processing 54(6), 497–506 (1992)

    Article  Google Scholar 

  18. Sangkeun, L.: Content-based image enhancement in the compressed domain based on multi-scale alpha-rooting algorithm. PRL 10(27), 1054–1066 (2006)

    Google Scholar 

  19. Zadeh, L.A.: Fuzzy Logic. Computer 1(4), 83–93 (1998)

    Google Scholar 

  20. Grabisch, M.: A new algorithm for identifying fuzzy measures and its application to pattern recognition. In: Proc. of 4th IEEE Int. Conf. on Fuzzy Systems, Yokohama, Japan, pp. 145–150 (1995)

    Google Scholar 

  21. Grabisch, M., Murofushi, T., Sugeno, M.: Fuzzy Measures and Integrals: Theory and Applications, pp. 348–373. Physica, NY (1989)

    Google Scholar 

  22. Lopez, M., Melin, P., Castillo, O.: A Method for Creating Ensemble Neural Networks Using a Sampling Data Approach. IFSA (2), 772–780 (2007)

    Google Scholar 

  23. Lopez, M., Melin, P.: Response integration in Ensemble Neural Networks using interval type-2 Fuzzy logic. In: IJCNN 2008, pp. 1503–1508 (2008)

    Google Scholar 

  24. Lopez, M., Melin, P., Castillo, O.: Pattern Recognition in Blur Motion Noisy Images using Fuzzy Methods for Response Integration in Ensemble Neural Networks. In: IFSA/EUSFLAT Conf. 2009, pp. 809–814 (2009)

    Google Scholar 

  25. Allah, M.M.A.: Artificial Neural Networks Fingerprints Authentication with Clusters Algorithm. Informatica 29, 303–307 (2005)

    Google Scholar 

  26. MATLAB Trade Marks, ©1994-2007 by The Math Works, Inc

    Google Scholar 

  27. Lopez, M., Melin, P., Castillo, O.: Optimization of Response Integration with Fuzzy Logic in Ensemble Neural Networks Using Genetic Algorithms. In: Soft Computing for Hybrid Intelligent Systems, pp. 129–150 (2008)

    Google Scholar 

  28. Mendoza, O., Melin, P., Licea, G.: Modular Neural Networks and Type-2 Fuzzy Logic for Face Recognition. In: Reformat, M. (ed.) Proceedings of NAFIPS 2007, San Diego, June 2007, vol. 1 (2007) (pages CD Rom)

    Google Scholar 

  29. Cunningham, P.: Overfitting and Diversity in Classification Ensembles based on Feature Selection, TCD Computer Science Technical Report, TCD-CS-2000-07

    Google Scholar 

  30. Melin, P., Castillo, O.: Hybrid Intelligent Systems for Pattern Recognition using Soft Computing. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  31. Melin, P., Mancilla, A., Lopez, M., Mendoza, O.: Hybrid modular neural network architecture with fuzzy Sugeno integration for time series forecasting. Appl. Soft Comput. 7(4), 1217–1226 (2007)

    Article  Google Scholar 

  32. Melin, P., Mancilla, A., Lopez, M., Solano, D., Soto, M., Castillo, O.: Pattern Recognition for Industrial Security using the Fuzzy Sugeno Integral and Modular Neural Networks. In: WSC11 11th Online World Conference on Soft Computing in Industrial Applications, September 18-October 6 (2006)

    Google Scholar 

  33. Melin, P., Mancilla, A., Lopez, M., Trujillo, W., Cota, J., Gonzalez, S.: Modular Neural Networks with Fuzzy Integration Applied for Time Series Forecasting. Analysis and Design of Intelligent Systems using Soft Computing Techniques, 217–225 (2007)

    Google Scholar 

  34. Melin, P., González, F., Martínez, G.: Pattern Recognition Using Modular Neural Networks and Genetic Algorithms. In: IC-AI 2004, pp. 77–83 (2004)

    Google Scholar 

  35. Melin, P., Urias, J., Solano, D., Soto, M., Lopez, M., Castillo, O.: Voice Recognition with Neural Networks, Type-2 Fuzzy Logic and Genetic Algorithms. Engineering Letters 13(2), 108–116 (2006)

    Google Scholar 

  36. Gutta, S., Huang, J., Takacs, B., Wechsler, H.: Face Recognition Using Ensembles of Netrworks. In: 13th International Conference on Pattern Recognition (ICPR 1996), Vienna, Austria, vol. 4, p. 50 (1996)

    Google Scholar 

  37. Du, Y., Ives, R.W., Etter, D.M., Welch, T.B.: Biometric Signal Processing Laboratory. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), May 2004, vol. 5, pp. 1025–1028 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lopez, M., Melin, P., Castillo, O. (2010). Comparative Study of Feature Extraction Methods of Fuzzy Logic Type 1 and Type-2 for Pattern Recognition System Based on the Mean Pixels. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Soft Computing for Recognition Based on Biometrics. Studies in Computational Intelligence, vol 312. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15111-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15111-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15110-1

  • Online ISBN: 978-3-642-15111-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics