Logics for Two Fragments beyond the Syllogistic Boundary | SpringerLink
Skip to main content

Logics for Two Fragments beyond the Syllogistic Boundary

  • Chapter
Fields of Logic and Computation

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6300))

Abstract

This paper is a contribution to natural logic, the study of logical systems for linguistic reasoning. We construct a system with the following properties: its syntax is closer to that of a natural language than is first-order logic; it can faithfully represent simple sentences with standard quantifiers, subject relative clauses (a recursive construct), and negation on nouns and verbs. We also give a proof system which is complete and has the finite model property. We go further by adding comparative adjective phrases, assuming interpretations by transitive relations. This last system has all the previously-mentioned properties as well.

The paper was written for theoretical computer scientists and logicians interested in areas such as decidability questions for fragments of first-order logic, modal logic, and natural deduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. van Benthem, J.: Essays in Logical Semantics. Reidel, Dordrecht (1986)

    Book  MATH  Google Scholar 

  2. Böerger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. In: Perspectives in Mathematical Logic, p. 1197. Springer, Heidelberg

    Google Scholar 

  3. van Dalen, D.: Logic and Structure, 4th edn. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  4. Fitch, F.B.: Natural Deduction Rules for English. Philosophical Studies 24(2), 89–104 (1973)

    Article  MathSciNet  Google Scholar 

  5. Francez, N., Dyckhoff, R.: Proof-Theoretic Semantics for a Natural Language Fragment. In: Jaeger, G., Ebert, C., Michaelis, J. (eds.) Proceedings, MoL 10/11. LNCS (LNAI). Springer, Heidelberg (2010) (to appear)

    Google Scholar 

  6. Grädel, E., Kolaitis, P., Vardi, M.: On the Decision Problem for Two-Variable First-Order Logic. Bulletin of Symbolic Logic 3(1), 53–69 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grädel, E., Otto, M., Rosen, E.: Undecidability Results on Two-Variable Logics. Archive for Mathematical Logic 38, 313–354 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gurevich, Y.: On the Classical Decision Problem. Logic in Computer Science Column. The Bulletin of the European Association for Theoretical Computer Science (October 1990)

    Google Scholar 

  9. Lutz, C., Sattler, U.: The Complexity of Reasoning with Boolean Modal Logics. In: Wolter, F., et al. (eds.) Advances in Modal Logics, vol. 3. CSLI Publications, Stanford (2001)

    Google Scholar 

  10. McAllester, D., Givan, R.: Natural Language Syntax and First Order Inference. Artificial Intelligence 56 (1992)

    Google Scholar 

  11. Mortimer, M.: On Languages with Two Variables. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 21, 135–140 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pelletier, F.J.: A Brief History of Natural Deduction. History and Philosophy of Logic 20, 1–31

    Google Scholar 

  13. Pratt-Hartmann, I.: A Two-Variable Fragment of English. Journal of Logic, Language and Information 12(1), 13–45 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pratt-Hartmann, I.: Fragments of Language. Journal of Logic, Language and Information 13, 207–223 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pratt-Hartmann, I., Moss, L.S.: Logics for the Relational Syllogistic. Review of Symbolic Logic 2(4), 647–683 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Vardi, M.Y., Wolper, P.: Automata-Theoretic Techniques for Modal Logics of Programs. Journal of Computer and System Sciences 32(2), 183–221 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moss, L.S. (2010). Logics for Two Fragments beyond the Syllogistic Boundary. In: Blass, A., Dershowitz, N., Reisig, W. (eds) Fields of Logic and Computation. Lecture Notes in Computer Science, vol 6300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15025-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15025-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15024-1

  • Online ISBN: 978-3-642-15025-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics