Finding Reductions Automatically | SpringerLink
Skip to main content

Finding Reductions Automatically

  • Chapter
Fields of Logic and Computation

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6300))

  • 825 Accesses

Abstract

We describe our progress building the program ReductionFinder, which uses off-the-shelf SAT solvers together with the Cmodels system to automatically search for reductions between decision problems described in logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allender, E., Bauland, M., Immerman, N., Schnoor, H., Vollmer, H.: The Complexity of Satisfiability Problems: Refining Schaefer’s Theorem. J. Comput. Sys. Sci. 75, 245–254 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Annals of Mathematics and Artificial Intelligence 12, 53–87 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Clark, K.: Negation as Failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293–322. Plenum Press, New York

    Google Scholar 

  4. Cook, S.: The Complexity of Theorem Proving Procedures. In: Proc. Third Annual ACM STOC Symp., pp. 151–158 (1971)

    Google Scholar 

  5. Ebbinghaus, H.-D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  6. Eén, N., Sörensson, N.: An Extensible SAT-solver [extended version 1.2]. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Feder, T., Vardi, M.: The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study Through Datalog and Group Theory. SAIM J. Comput. 28, 57–104 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Giunchiglia, E., Lierler, Y., Maratea, M.: SAT-Based Answer Set Programming. In: Proc. AAAI, pp. 61–66 (2004)

    Google Scholar 

  9. Hartmanis, J., Immerman, N., Mahaney, S.: One-Way Log Tape Reductions. In: IEEE Found. of Comp. Sci. Symp., pp. 65–72 (1978)

    Google Scholar 

  10. Immerman, N.: Descriptive Complexity. Springer Graduate Texts in Computer Science, New York (1999)

    Book  MATH  Google Scholar 

  11. Immerman, N.: Languages That Capture Complexity Classes. SIAM J. Comput. 16(4), 760–778 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Janhunen, T.: A counter-based approach to translating normal logic programs into sets of clauses. In: Proc. ASP 2003 Workshop, pp. 166–180 (2003)

    Google Scholar 

  13. Jones, N.: Reducibility Among Combinatorial Problems in Log n Space. In: Proc. Seventh Annual Princeton Conf. Info. Sci. and Systems, pp. 547–551 (1973)

    Google Scholar 

  14. Karp, R.: Reducibility Among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computations, pp. 85–104. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  15. Ladner, R.: On the Structure of Polynomial Time Reducibility. J. Assoc. Comput. Mach. 2(1), 155–171 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  17. Lifschitz, V., Razborov, A.A.: Why are there so many loop formulas? ACM Trans. Comput. Log. 7(2), 261–268 (2006)

    Article  MathSciNet  Google Scholar 

  18. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malike, S.: Chaff: Engineering an Efficient SAT Solver. In: Design Automation Conference 2001 (2001)

    Google Scholar 

  19. Reingold, O.: Undirected ST-connectivity in Log-Space. In: ACM Symp. Theory of Comput., pp. 376–385 (2005)

    Google Scholar 

  20. Schaefer, T.: The Complexity of Satisfiability Problems. In: ACM Symp. Theory of Comput., pp. 216–226 (1978)

    Google Scholar 

  21. Schwartz, J.T., Dewar, R.B.K., Dubinsky, E., Schonberg, E.: Programming with Sets: an Introduction to SETL. Springer, New York (1986)

    Book  MATH  Google Scholar 

  22. Valiant, L.: Reducibility By Algebraic Projections. L’Enseignement mathématique, T. XXVIII 3-4, 253–268 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crouch, M., Immerman, N., Moss, J.E.B. (2010). Finding Reductions Automatically. In: Blass, A., Dershowitz, N., Reisig, W. (eds) Fields of Logic and Computation. Lecture Notes in Computer Science, vol 6300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15025-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15025-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15024-1

  • Online ISBN: 978-3-642-15025-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics