Social Network Mining with Nonparametric Relational Models | SpringerLink
Skip to main content

Social Network Mining with Nonparametric Relational Models

  • Conference paper
Advances in Social Network Mining and Analysis (SNAKDD 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5498))

Included in the following conference series:

Abstract

Statistical relational learning (SRL) provides effective techniques to analyze social network data with rich collections of objects and complex networks. Infinite hidden relational models (IHRMs) introduce nonparametric mixture models into relational learning and have been successful in many relational applications. In this paper we explore the modeling and analysis of complex social networks with IHRMs for community detection, link prediction and product recommendation. In an IHRM-based social network model, each edge is associated with a random variable and the probabilistic dependencies between these random variables are specified by the model, based on the relational structure. The hidden variables, one for each object, are able to transport information such that non-local probabilistic dependencies can be obtained. The model can be used to predict entity attributes, to predict relationships between entities and it performs an interpretable cluster analysis. We demonstrate the performance of IHRMs with three social network applications. We perform community analysis on the Sampson’s monastery data and perform link analysis on the Bernard & Killworth data. Finally we apply IHRMs to the MovieLens data for prediction of user preference on movies and for an analysis of user clusters and movie clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Airoldi, E.M., Blei, D.M., Xing, E.P., Fienberg, S.E.: A latent mixed-membership model for relational data. In: Proc. ACM SIGKDD Workshop on Link Discovery (2005)

    Google Scholar 

  2. Aldous, D.: Exchangeability and related topics. In: Ecole d’Ete de Probabilites de Saint-Flour XIII 1983, pp. 1–198. Springer, Heidelberg (1985)

    Google Scholar 

  3. Antoniou, G., van Harmelen, F.: A Semantic Web Primer. MIT Press, Cambridge (2004)

    Google Scholar 

  4. Aukia, J., Kaski, S., Sinkkonen, J.: Inferring vertex properties from topology in large networks. In: NIPS 2007 workshop on statistical models of networks (2007)

    Google Scholar 

  5. Bernard, H., Killworth, P., Sailer, L.: Informant accuracy in social network data iv. Social Networks 2 (1980)

    Google Scholar 

  6. Blei, D., Jordan, M.: Variational inference for dp mixtures. Bayesian Analysis 1(1), 121–144 (2005)

    MathSciNet  Google Scholar 

  7. Breiger, R.L., Boorman, S.A., Arabie, P.: An algorithm for clustering relational data with applications to social network analysis and comparison to multidimensional scaling. Journal of Mathematical Psychology 12 (1975)

    Google Scholar 

  8. Dzeroski, S., Lavrac, N. (eds.): Relational Data Mining. Springer, Berlin (2001)

    MATH  Google Scholar 

  9. Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: Dzeroski, S., Lavrac, N. (eds.) Relational Data Mining, Springer, Heidelberg (2001)

    Google Scholar 

  10. Getoor, L., Koller, D., Friedman, N.: From instances to classes in probabilistic relational models. In: Proc. ICML 2000 Workshop on Attribute-Value and Relational Learning (2000)

    Google Scholar 

  11. Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)

    MATH  Google Scholar 

  12. Handcock, M.S., Raftery, A.E., Tantrum, J.M.: Model-based clustering for social networks. Journal of the Royal Statistical Society 170 (2007)

    Google Scholar 

  13. Hofmann, T., Puzicha, J.: Latent class models for collaborative filtering. In: Proc. 16th International Joint Conference on Artificial Intelligence (1999)

    Google Scholar 

  14. Ishwaran, H., James, L.: Gibbs sampling methods for stick breaking priors. Journal of the American Statistical Association 96(453), 161–173 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kemp, C., Tenenbaum, J.B., Griffiths, T.L., Yamada, T., Ueda, N.: Learning systems of concepts with an infinite relational model. In: Proc. 21st Conference on Artificial Intelligence (2006)

    Google Scholar 

  16. Neville, J., Jensen, D.: Leveraging relational autocorrelation with latent group models. In: Proc. 4th international workshop on Multi-relational mining, pp. 49–55. ACM Press, New York (2005)

    Chapter  Google Scholar 

  17. Raedt, L.D., Kersting, K.: Probabilistic logic learning. SIGKDD Explor. Newsl. 5(1), 31–48 (2003)

    Article  Google Scholar 

  18. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: An open architecture for collaborative filtering of netnews. In: Proc. of the ACM 1994 Conference on Computer Supported Cooperative Work, pp. 175–186. ACM, New York (1994)

    Chapter  Google Scholar 

  19. Sampson, F.S.: A Novitiate in a Period of Change: An Experimental and Case Study of Social Relationships. PhD thesis (1968)

    Google Scholar 

  20. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Application of dimensionality reduction in recommender systems–a case study. In: WebKDD Workshop (2000)

    Google Scholar 

  21. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Analysis of recommender algorithms for e-commerce. In: Proc. ACM E-Commerce Conference, pp. 158–167. ACM, New York (2000)

    Chapter  Google Scholar 

  22. Sethuraman, J.: A constructive definition of dirichlet priors. Statistica Sinica 4, 639–650 (1994)

    MATH  MathSciNet  Google Scholar 

  23. Wang, X., Mohanty, N., McCallum, A.: Group and topic discovery from relations and text. In: Proc. 3rd international workshop on Link discovery, pp. 28–35. ACM, New York (2005)

    Chapter  Google Scholar 

  24. Xu, Z., Tresp, V., Yu, K., Kriegel, H.-P.: Infinite hidden relational models. In: Proc. 22nd UAI (2006)

    Google Scholar 

  25. Xu, Z., Tresp, V., Yu, S., Yu, K.: Nonparametric relational learning for social network analysis. In: Proc. 2nd ACM Workshop on Social Network Mining and Analysis, SNA-KDD 2008 (2008)

    Google Scholar 

  26. Yedidia, J., Freeman, W., Weiss, Y.: Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Transactions on Information Theory 51(7), 2282–2312 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, Z., Tresp, V., Rettinger, A., Kersting, K. (2010). Social Network Mining with Nonparametric Relational Models. In: Giles, L., Smith, M., Yen, J., Zhang, H. (eds) Advances in Social Network Mining and Analysis. SNAKDD 2008. Lecture Notes in Computer Science, vol 5498. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14929-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14929-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14928-3

  • Online ISBN: 978-3-642-14929-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics