Hybrid DIAAF/RS: Statistical Textual Feature Selection for Language-Independent Text Classification | SpringerLink
Skip to main content

Hybrid DIAAF/RS: Statistical Textual Feature Selection for Language-Independent Text Classification

  • Conference paper
Advances in Data Mining. Applications and Theoretical Aspects (ICDM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6171))

Included in the following conference series:

  • 2492 Accesses

Abstract

Textual Feature Selection (TFS) is an important phase in the process of text classification. It aims to identify the most significant textual features (i.e. key words and/or phrases), in a textual dataset, that serve to distinguish between text categories. In TFS, basic techniques can be divided into two groups: linguistic vs. statistical. For the purpose of building a language-independent text classifier, the study reported here is concerned with statistical TFS only. In this paper, we propose a novel statistical TFS approach that hybridizes the ideas of two existing techniques, DIAAF (Darmstadt Indexing Approach Association Factor) and RS (Relevancy Score). With respect to associative (text) classification, the experimental results demonstrate that the proposed approach can produce greater classification accuracy than other alternative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Database. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, DC, USA, May 1993, pp. 207–216. ACM Press, New York (1993)

    Chapter  Google Scholar 

  2. Ali, K., Manganaris, S., Srikant, R.: Partial Classification using Association Rules. In: Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, Newport Beach, CA, USA, August 1997, pp. 115–118. AAAI Press, Menlo Park (1997)

    Google Scholar 

  3. Antonie, M.-L., Zaïane, O.R.: Text Document Categorization by Term Association. In: Proceedings of the 2002 IEEE International Conference on Data Mining, Maebashi City, Japan, December 2002, pp. 19–26. IEEE Computer Society, Los Alamitos (2002)

    Chapter  Google Scholar 

  4. Church, K.W., Hanks, P.: Word Association Norms, Mutual Information, and Lexicography. In: Proceedings of the 27th Annual Meeting on Association for Computational Linguistics, Vancouver, BC, Canada, pp. 76–83. Association for Computational Linguistics (1989)

    Google Scholar 

  5. Coenen, F., Leng, P.: An Evaluation of Approaches to Classification Rule Selection. In: Proceedings of the 4th IEEE International Conference on Data Mining, Brighton, UK, November 2004, pp. 359–362. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  6. Coenen, F., Leng, P., Zhang, L.: Threshold Tuning for Improved Classification Association Rule Mining. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 216–225. Springer, Heidelberg (2005)

    Google Scholar 

  7. Coenen, F., Leng, P.: The Effect of Threshold Values on Association Rule based Classification Accuracy. Journal of Data and Knowledge Engineering 60(2), 345–360 (2007)

    Article  Google Scholar 

  8. Coenen, F., Leng, P., Sanderson, R., Wang, Y.J.: Statistical Identification of Key Phrases for Text Classification. In: Proceedings of the 5th International Conference on Machine Learning and Data Mining, Leipzig, Germany, July 2007, pp. 838–853. Springer, Heidelberg (2007)

    Google Scholar 

  9. Cohen, W.W.: Fast Effective Rule Induction. In: Proceedings of the 12th International Conference on Machine Learning, Tahoe City, CA, USA, July 1995, pp. 115–123. Morgan Kaufmann Publishers, San Francisco (1995)

    Google Scholar 

  10. Deng, Z.-H., Tang, S.-W., Yang, D.-Q., Zhang, M., Wu, X.-B., Yang, M.: Two odds-radio-based Text Classification Algorithms. In: Proceedings of the Third International Conference on Web Information Systems Engineering workshop, Singapore, December 2002, pp. 223–231. IEEE Computer Society, Los Alamitos (2002)

    Chapter  Google Scholar 

  11. Fano, R.M.: Transmission of Information ( A Statistical Theory of Communication. The MIT Press, Cambridge (1961)

    Google Scholar 

  12. Fragoudis, D., Meretaskis, D., Likothanassis, S.: Best Terms: An Efficient Feature-selection Algorithm for Text Categorization. Knowledge and Information Systems 8(1), 16–33 (2005)

    Article  Google Scholar 

  13. Fuhr, N.: Models for Retrieval with Probabilistic Indexing. Information Processing and Management 25(1), 55–72 (1989)

    Article  MathSciNet  Google Scholar 

  14. Fuhr, N., Buckley, C.: A Probabilistic Learning Approach for Document Indexing. ACM Transactions on Information System 9(3), 223–248 (1991)

    Article  Google Scholar 

  15. Hersh, W.R., Buckley, C., Leone, T.J., Hickman, D.H.: OHSUMED: An Interactive Retrieval Evaluation and New Large Test Collection for Research. In: Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Dublin, Ireland, July 1994, pp. 192–201. ACM/Springer (1994)

    Google Scholar 

  16. Kobayashi, M., Aono, M.: Vector Space Models for Search and Cluster Mining. In: Berry, M.W. (ed.) Survey of Text Mining – Clustering, Classification, and Retrieval, pp. 103–122. Springer, New York (2004)

    Google Scholar 

  17. Lang, K.: News Weeder: Learning to Filter Netnews. In: Proceedings of the Twelfth International Conference on Machine Learning, Tahoe City, CA, USA, July 1995, pp. 331–339. Morgan Kaufmann Publishers, San Francisco (1995)

    Google Scholar 

  18. Li, X., Liu, B.: Learning to Classify Texts using Positive and Unlabeled Data. In: Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, Acapulco, Mexico, August 2003, pp. 587–594. Morgan Kaufmann Publishers, San Francisco (2003)

    Google Scholar 

  19. Li, W., Han, J., Pei, J.: CMAR: Accurate and Efficient Classification based on Multiple Class-association Rules. In: Proceedings of the 2001 IEEE International Conference on Data Mining, San Jose, CA, USA, November-December 2001, pp. 369–376. IEEE Computer Society, Los Alamitos (2001)

    Google Scholar 

  20. Liu, B., Hsu, W., Ma, Y.: Integrating Classification and Association Rule Mining. In: Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, August 1998, pp. 80–86. AAAI Press, Menlo Park (1998)

    Google Scholar 

  21. Maron, M.E.: Automatic Indexing: An Experimental Inquiry. Journal of the ACM 8(3), 404–417 (1961)

    Article  MATH  Google Scholar 

  22. Moschitti, A., Basili, R.: Complex Linguistic Features for Text Classification: A Comprehensive Study. In: McDonald, S., Tait, J.I. (eds.) ECIR 2004. LNCS, vol. 2997, pp. 181–196. Springer, Heidelberg (2004)

    Google Scholar 

  23. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Francisco (1993)

    Google Scholar 

  24. Salton, G., Buckley, C.: Term-weighting Approaches in Automatic Text Retrieval. Information Processing & Management 24(5), 513–523 (1988)

    Article  Google Scholar 

  25. Salton, G., Wong, A., Yang, C.S.: A Vector Space Model for Automatic Indexing. Information Retrieval and Language Processing 18(11), 613–620 (1975)

    MATH  Google Scholar 

  26. Scheffer, T., Wrobel, S.: Text Classification Beyond the Bag-of-words Representation. In: Proceedings of the Workshop on Text Learning, held at the Nineteenth International Conference on Machine Learning, Sydney, Australia (2002)

    Google Scholar 

  27. Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Computing Surveys 34(1), 1–47 (2002)

    Article  Google Scholar 

  28. Shidara, Y., Nakamura, A., Kudo, M.: CCIC: Consistent Common Itemsets Classifier. In: Proceedings of the 5th International Conference on Machine Learning and Data Mining, Leipzig, Germany, July 2007, pp. 490–498. Springer, Heidelberg (2007)

    Google Scholar 

  29. Wang, Y.J., Coenen, F., Leng, P., Sanderson, R.: Text Classification using Language-independent Pre-processing. In: Proceedings of the Twenty-sixth SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence, Peterhouse College, Cambridge, UK, December 2006, pp. 413–417. Springer, Heidelberg (2006)

    Google Scholar 

  30. Wang, Y.J., Sanderson, R., Coenen, F., Leng, P.: Document-base Extraction for Single-label Text Classification. In: Proceedings of the 10th International Conference on Data Warehousing and Knowledge Discovery, Turin, Italy, September 2008, pp. 357–367. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  31. Wiener, E., Pedersen, J.O., Weigend, A.S.: A Neural Network Approach to Topic Spotting. In: Proceedings of the 4th Annual Symposium on Document Analysis and Information Retrieval, Las Vegas, NV, USA, April 1995, pp. 317–332 (1995)

    Google Scholar 

  32. Yin, X., Han, J.: CPAR: Classification based on Predictive Association Rules. In: Proceedings of the Third SIAM International Conference on Data Mining, San Francisco, CA, USA, May 2003, pp. 331–335. SIAM, Philadelphia (2003)

    Google Scholar 

  33. Yoon, Y., Lee, G.G.: Practical Application of Associative Classifier for Document Classification. In: Proceedings of the Second Asia Information Retrieval Symposium, Jeju Island, Korea, October 2005, pp. 467–478. Springer, Heidelberg (2005)

    Google Scholar 

  34. Zaïane, O.R., Antonie, M.-L.: Classifying Text Documents by Associating Terms with Text Categories. In: Proceedings of the 13th Australasian Database Conference, Melbourne, Victoria, Australia, January-February 2002, pp. 215–222. CRPIT 5 Australian Computer Society (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Y.J., Li, F., Coenen, F., Sanderson, R., Xin, Q. (2010). Hybrid DIAAF/RS: Statistical Textual Feature Selection for Language-Independent Text Classification. In: Perner, P. (eds) Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2010. Lecture Notes in Computer Science(), vol 6171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14400-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14400-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14399-1

  • Online ISBN: 978-3-642-14400-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics