Abstract
We present a polynomial-time approximation algorithm for legally coloring as many edges of a given simple graph as possible using two colors. It achieves an approximation ratio of roughly 0.842 and runs in O(n 3 m) time, where n (respectively, m) is the number of vertices (respectively, edges) in the input graph. The previously best ratio achieved by a polynomial-time approximation algorithm was \(\frac{5}{6}\approx 0.833\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chen, Z.-Z., Tanahashi, R.: Approximating Maximum Edge 2-Coloring in Simple Graphs via Local Improvement. Theoretical Computer Science (special issue on AAIM 2008) 410, 4543–4553 (2009)
Chen, Z.-Z., Tanahashi, R., Wang, L.: An Improved Approximation Algorithm for Maximum Edge 2-Coloring in Simple Graphs. Journal of Discrete Algorithms 6, 205–215 (2008)
Feige, U., Ofek, E., Wieder, U.: Approximating Maximum Edge Coloring in Multigraphs. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 108–121. Springer, Heidelberg (2002)
Gabow, H.: An Efficient Reduction Technique for Degree-Constrained Subgraph and Bidirected Network Flow Problems. In: Proceedings of the 15th Annual ACM Symposium on Theory of Computing (STOC 1983), pp. 448–456. ACM, New York (1983)
Hartvigsen, D.: Extensions of Matching Theory. Ph.D. Thesis, Carnegie-Mellon University (1984)
Hochbaum, D.: Approximation Algorithms for NP-Hard Problems. PWS Publishing Company, Boston (1997)
Jacobs, D.P., Jamison, R.E.: Complexity of Recognizing Equal Unions in Families of Sets. Journal of Algorithms 37, 495–504 (2000)
Kawarabayashi, K., Matsuda, H., Oda, Y., Ota, K.: Path Factors in Cubic Graphs. Journal of Graph Theory 39, 188–193 (2002)
Kosowski, A.: Approximating the Maximum 2- and 3-Edge-Colorable Subgraph Problems. Discrete Applied Mathematics 157, 3593–3600 (2009)
Kosowski, A., Malafiejski, M., Zylinski, P.: Packing [1,Δ]-Factors in Graphs of Small Degree. Journal of Combinatorial Optimization 14, 63–86 (2007)
O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, Oxford (1987)
Urrutia, J.: Art Gallery and Illumination Problems. In: Handbook on Computational Geometry. Elsevier Science, Amsterdam (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, ZZ., Konno, S., Matsushita, Y. (2010). Approximating Maximum Edge 2-Coloring in Simple Graphs. In: Chen, B. (eds) Algorithmic Aspects in Information and Management. AAIM 2010. Lecture Notes in Computer Science, vol 6124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14355-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-14355-7_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14354-0
Online ISBN: 978-3-642-14355-7
eBook Packages: Computer ScienceComputer Science (R0)