Efficient Similarity Query in RFID Trajectory Databases | SpringerLink
Skip to main content

Efficient Similarity Query in RFID Trajectory Databases

  • Conference paper
Web-Age Information Management (WAIM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6184))

Included in the following conference series:

Abstract

Similarity query is one of the most important operations in trajectory databases and this paper addresses this problem in RFID trajectory databases. Due to the special sensing manner, the model of RFID trajectory is different from the traditional trajectory, leading to the inefficiency of existing techniques. This paper proposes a novel distance function—EDEU(Edit Distance combined with Euclidean Distance), which supports the local time shifting and takes the distance between adjacent logic areas into consideration. We also develop two filter-refinement mechanisms based on Co-occurrence Degree and Length Dispersion Ratio to improve the efficiency of the similarity analysis. Furthermore, we extend our solution to determine the local similarity from the global dissimilarity trajectory pairs. The extensive experiments verify the efficiency of our proposed algorithms.

The research was supported by the NSF of China under Grants No. 60773220 and the Fundamental Research Funds for the Central Universities No. N090904013.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. André-Jönsson, H., Badal, D.Z.: Using signature files for querying time-series data. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, Springer, Heidelberg (1997)

    Google Scholar 

  2. Chang, J., Bista, R., Kim, J., Kim, Y.: A new trajectory search algorithm based on spatio-temporal similarity on spatial network. In: CIT 2007, pp. 110–115 (2007)

    Google Scholar 

  3. Chen, L., Ng, R.: On the marriage of lp-norms and edit distance. In: VLDB ’04, pp. 792–803 (2004)

    Google Scholar 

  4. Chen, L., Özsu, M., Oria, V.: Robust and fast similarity search for moving object trajectories. In: SIGMOD ’05, pp. 491–502 (2005)

    Google Scholar 

  5. Frentzos, E., Gratsias, K., Theodoridis, Y.: Index-based most similar trajectory search. In: ICDE ’07, pp. 816–825 (2007)

    Google Scholar 

  6. Lee, C., Chung, C.: Efficient storage scheme and query processing for supply chain management using rfid. In: SIGMOD ’08, pp. 291–302 (2008)

    Google Scholar 

  7. Mannila, H., Ronkainen, P.: Similarity of event sequences. In: Temporal Representation and Reasoning ’97, pp. 136–139 (1997)

    Google Scholar 

  8. Masciari, E.: Rfid data management for effective objects tracking. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 457–461. Springer, Heidelberg (2007)

    Google Scholar 

  9. Sarawagi, S., Kirpal, A.: Efficient set joins on similarity predicates. In: SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD international conference on Management of data, pp. 743–754. ACM, New York (2004)

    Chapter  Google Scholar 

  10. Vlachos, M., Gunopoulos, D., Kollios, G.: Discovering similar multidimensional trajectories. In: ICDE 2002, p. 673 (2002)

    Google Scholar 

  11. Xiao, C., Wang, W., Lin, X.: Ed-join: an efficient algorithm for similarity joins with edit distance constraints. Proc. VLDB Endow. 1(1), 933–944 (2008)

    Google Scholar 

  12. Yanagisawa, Y., Akahani, T., Satoh, J.: Shape-based similarity query for trajectory of mobile objects. In: Chen, M.-S., Chrysanthis, P.K., Sloman, M., Zaslavsky, A. (eds.) MDM 2003. LNCS, vol. 2574, pp. 63–77. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Yang, B., Lu, H., Jensen, C.S.: Scalable continuous range monitoring of moving objects in symbolic indoor space. In: CIKM ’09, pp. 671–680 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Y., Yu, G., Gu, Y., Yue, D., Zhang, T. (2010). Efficient Similarity Query in RFID Trajectory Databases. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds) Web-Age Information Management. WAIM 2010. Lecture Notes in Computer Science, vol 6184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14246-8_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14246-8_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14245-1

  • Online ISBN: 978-3-642-14246-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics