Where Did Mally Go Wrong? | SpringerLink
Skip to main content

Where Did Mally Go Wrong?

  • Conference paper
Deontic Logic in Computer Science (DEON 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6181))

Included in the following conference series:

Abstract

In 1926, Ernst Mally proposed the first system of deontic logic. His system turned out to be unacceptable. How can it be repaired? We discuss several proposals to reformulate it in terms of strict implication, relevant implication and strict relevant implication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, A.R., Belnap Jr., N.D.: Entailment: The Logic of Relevance and Necessity, vol. 1. Princeton University Press, Princeton (1975)

    MATH  Google Scholar 

  2. Anderson, A.R., Belnap Jr., N.D., Dunn, J.M.: Entailment: The Logic of Relevance and Necessity, vol. 2. Princeton University Press, Princeton (1992)

    MATH  Google Scholar 

  3. Bazhanov, V.A.: The scholar and the ‘Wolfhound Era’: The fate of Ivan E. Orlov’s ideas in logic, philosophy, and science. Science in Context 16, 535–550 (2003)

    Article  Google Scholar 

  4. Chellas, B.F., Segerberg, K.: Modal logics in the vicinity of S1. Notre Dame Journal of Formal Logic 37, 1–24 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Došen, K.: The first axiomatization of relevant logic. Journal of Philosophical Logic 21, 339–356 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Føllesdal, D., Hilpinen, R.: Deontic logic: An introduction. In: Hilpinen, R. (ed.) Deontic Logic: Introductory and Systematic Readings, 2nd edn., pp. 1–35. Reidel, Dordrecht (1981)

    Google Scholar 

  7. Goble, L.: The Andersonian reduction and relevant deontic logic. In: Brown, B., Woods, J. (eds.) New Studies in Exact Philosophy: Logic, Mathematics and Science. Proceedings of the 1999 Conference of the Society of Exact Philosophy, pp. 213–246. Hermes Science Publications, Paris (2001)

    Google Scholar 

  8. Lemmon, E.J.: New foundations for Lewis modal systems. The Journal of Symbolic Logic 22, 176–186 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lokhorst, G.J.C.: Anderson’s relevant deontic and eubouliatic systems. Notre Dame Journal of Formal Logic 49, 65–73 (2008)

    MATH  MathSciNet  Google Scholar 

  10. Lokhorst, G.J.C.: Andersonian deontic logic, propositional quantification, and Mally. Notre Dame Journal of Formal Logic 47, 385–395 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lokhorst, G.J.C.: Mally’s deontic logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2002), http://plato.stanford.edu/entries/mally-deontic/

  12. Lokhorst, G.J.C., Goble, L.: Mally’s deontic logic. Grazer philosophische Studien 67, 37–57 (2004)

    Google Scholar 

  13. McCune, W.: Prover9 version 2008-11A (November 2008), http://www.cs.unm.edu/~mccune/prover9/

  14. Mally, E.: Grundgesetze des Sollens: Elemente der Logik des Willens. Leuschner und Lubensky, Graz (1926); Reprinted in Mally, E.: Logische Schriften: Großes Logikfragment, Grundgesetze des Sollens. In: Wolf, K., Weingartner, P. (eds.), pp. 227–324. Reidel, Dordrecht (1971)

    Google Scholar 

  15. Menger, K.: A logic of the doubtful: On optative and imperative logic. In: Reports of a Mathematical Colloquium. 2nd Series, vol. (2), pp. 53–64. Indiana University Press, Notre Dame (1939)

    Google Scholar 

  16. Morscher, E.: Mallys Axiomsystem für die deontische Logik: Rekonstruktion und kritische Würdigung. In: Hieke, A. (ed.) Ernst Mally: Versuch einer Neubewertung, pp. 81–165. Academia Verlag, Sankt Augustin (1998)

    Google Scholar 

  17. Orlov, I.E.: Ischislenie sovmestimosti predlozhenij. Matematicheskij sbornik 35, 263–286 (1928), http://mi.mathnet.ru/msb/v35/i3/p263

    MATH  Google Scholar 

  18. Rabe, F., Pudlák, P., Sutcliffe, G., Shen, W.: Solving the $100 modal logic challenge. Journal of Applied Logic 7, 113–130 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Slaney, J.K.: MaGIC (Matrix Generator for Implication Connectives) version 2.2.1 (November 2008), http://users.rsise.anu.edu.au/~jks/magic.html

  20. Zeman, J.J.: Modal Logic: The Lewis-Modal Systems. The Clarendon Press, Oxford (1973), http://www.clas.ufl.edu/users/jzeman/modallogic/

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lokhorst, GJ.C. (2010). Where Did Mally Go Wrong?. In: Governatori, G., Sartor, G. (eds) Deontic Logic in Computer Science. DEON 2010. Lecture Notes in Computer Science(), vol 6181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14183-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14183-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14182-9

  • Online ISBN: 978-3-642-14183-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics