Abstract
In 1926, Ernst Mally proposed the first system of deontic logic. His system turned out to be unacceptable. How can it be repaired? We discuss several proposals to reformulate it in terms of strict implication, relevant implication and strict relevant implication.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderson, A.R., Belnap Jr., N.D.: Entailment: The Logic of Relevance and Necessity, vol. 1. Princeton University Press, Princeton (1975)
Anderson, A.R., Belnap Jr., N.D., Dunn, J.M.: Entailment: The Logic of Relevance and Necessity, vol. 2. Princeton University Press, Princeton (1992)
Bazhanov, V.A.: The scholar and the ‘Wolfhound Era’: The fate of Ivan E. Orlov’s ideas in logic, philosophy, and science. Science in Context 16, 535–550 (2003)
Chellas, B.F., Segerberg, K.: Modal logics in the vicinity of S1. Notre Dame Journal of Formal Logic 37, 1–24 (1996)
Došen, K.: The first axiomatization of relevant logic. Journal of Philosophical Logic 21, 339–356 (1992)
Føllesdal, D., Hilpinen, R.: Deontic logic: An introduction. In: Hilpinen, R. (ed.) Deontic Logic: Introductory and Systematic Readings, 2nd edn., pp. 1–35. Reidel, Dordrecht (1981)
Goble, L.: The Andersonian reduction and relevant deontic logic. In: Brown, B., Woods, J. (eds.) New Studies in Exact Philosophy: Logic, Mathematics and Science. Proceedings of the 1999 Conference of the Society of Exact Philosophy, pp. 213–246. Hermes Science Publications, Paris (2001)
Lemmon, E.J.: New foundations for Lewis modal systems. The Journal of Symbolic Logic 22, 176–186 (1957)
Lokhorst, G.J.C.: Anderson’s relevant deontic and eubouliatic systems. Notre Dame Journal of Formal Logic 49, 65–73 (2008)
Lokhorst, G.J.C.: Andersonian deontic logic, propositional quantification, and Mally. Notre Dame Journal of Formal Logic 47, 385–395 (2006)
Lokhorst, G.J.C.: Mally’s deontic logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2002), http://plato.stanford.edu/entries/mally-deontic/
Lokhorst, G.J.C., Goble, L.: Mally’s deontic logic. Grazer philosophische Studien 67, 37–57 (2004)
McCune, W.: Prover9 version 2008-11A (November 2008), http://www.cs.unm.edu/~mccune/prover9/
Mally, E.: Grundgesetze des Sollens: Elemente der Logik des Willens. Leuschner und Lubensky, Graz (1926); Reprinted in Mally, E.: Logische Schriften: Großes Logikfragment, Grundgesetze des Sollens. In: Wolf, K., Weingartner, P. (eds.), pp. 227–324. Reidel, Dordrecht (1971)
Menger, K.: A logic of the doubtful: On optative and imperative logic. In: Reports of a Mathematical Colloquium. 2nd Series, vol. (2), pp. 53–64. Indiana University Press, Notre Dame (1939)
Morscher, E.: Mallys Axiomsystem für die deontische Logik: Rekonstruktion und kritische Würdigung. In: Hieke, A. (ed.) Ernst Mally: Versuch einer Neubewertung, pp. 81–165. Academia Verlag, Sankt Augustin (1998)
Orlov, I.E.: Ischislenie sovmestimosti predlozhenij. Matematicheskij sbornik 35, 263–286 (1928), http://mi.mathnet.ru/msb/v35/i3/p263
Rabe, F., Pudlák, P., Sutcliffe, G., Shen, W.: Solving the $100 modal logic challenge. Journal of Applied Logic 7, 113–130 (2009)
Slaney, J.K.: MaGIC (Matrix Generator for Implication Connectives) version 2.2.1 (November 2008), http://users.rsise.anu.edu.au/~jks/magic.html
Zeman, J.J.: Modal Logic: The Lewis-Modal Systems. The Clarendon Press, Oxford (1973), http://www.clas.ufl.edu/users/jzeman/modallogic/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lokhorst, GJ.C. (2010). Where Did Mally Go Wrong?. In: Governatori, G., Sartor, G. (eds) Deontic Logic in Computer Science. DEON 2010. Lecture Notes in Computer Science(), vol 6181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14183-6_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-14183-6_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14182-9
Online ISBN: 978-3-642-14183-6
eBook Packages: Computer ScienceComputer Science (R0)