Towards Metalogical Systematisation of Deontic Action Logics Based on Boolean Algebra | SpringerLink
Skip to main content

Towards Metalogical Systematisation of Deontic Action Logics Based on Boolean Algebra

  • Conference paper
Deontic Logic in Computer Science (DEON 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6181))

Included in the following conference series:

Abstract

The aim of the present paper is to provide a metalogical systematisation in the area of deontic action logic based on Boolean algebra. Differences among the systems in question lie in two aspects: the level of closedness of a deontic action logic and the possibility of performing no action at all. It is also shown that the existing definitions of obligation in those systems are not acceptable due to their unintuitive interpretation or paradoxical consequences. As a solution we propose an axiomatic characterisation of obligation with an adequate class of models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Castañeda, H.N.: The Paradoxes of Deontic Logic: The simplest colution to all of them in one fell swoop. In: Hilpinen, R. (ed.) New Studies in Deontic Logic, pp. 37–85. Reidel, Dordrecht (1981)

    Google Scholar 

  2. Castro, P.F., Maibaum, T.S.E.: A Tableaux System for Deontic Action Logic. In: van der Meyden, R., van der Torre, L. (eds.) DEON 2008. LNCS (LNAI), vol. 5076, pp. 34–48. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Castro, P.F., Maibaum, T.S.E.: Deontic action logic, atomic boolean algebras and fault-tolerance. J. of Applied Logic 7(4), 441–466 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dignum, F., Meyer, J.-J.C., Wieringa, R.J.: Free choice and contextually permitted actions. Studia Logica 57(1), 193–220 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Føllesdal, D., Hilpinen, R.: Deontic logic: an introduction. In: Hilpinen, R. (ed.) Deontic Logic: Introductory and Systematic Reading, pp. 1–35. D. Reidel, Dordrecht (1971)

    Google Scholar 

  6. Hughes, J., Royakkers, L.M.M.: Don’t Ever Do That! Long-term Duties in PD e L. In: Goble, L., Meyer, J.-J.C. (eds.) DEON 2006. LNCS (LNAI), vol. 4048, pp. 131–148. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Kalinowski, J.: Theorie des propositions normatives. Studia Logica 1, 147–182 (1953)

    Article  MathSciNet  Google Scholar 

  8. Lokhorst, C.G.-J.: Reasoning about actions and obligations in first-order logic. Studia Logica 57(1), 221–237 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. McCarty, L.T.: Permissions and Obligations. In: Proccedings of IJCAI-83, pp. 287–294 (1983)

    Google Scholar 

  10. Van Der Meyden, R.: The dynamic logic of permission. J. of Logic and Computation 6, 465–479 (1996)

    Article  MATH  Google Scholar 

  11. Meyer, J.J.C.: A Different Approach to Deontic Logic: Deontic Logic Viewed as a Variant of Dynamic Logic. Notre Dame Journal of Formal Logic 1, 109–136 (1988)

    Google Scholar 

  12. Ross, A.: Imperatives and logic. Theoria 7, 53–71 (1941)

    Google Scholar 

  13. Segerberg, K.: Action-games. Acta Philosophica Fennica 32, 220–231 (1981)

    MATH  MathSciNet  Google Scholar 

  14. Segerberg, K.: A Deontic Logic of Action. Studia Logica 41, 269–282 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. Trypuz, R., Kulicki, R.: A systematics of deontic action logics based on boolean algebra. Logic and Logical Philosophy (forthcoming, 2010)

    Google Scholar 

  16. von Wright, G.H.: Deontic logic. Mind LX(237), 1–15 (1951)

    Google Scholar 

  17. von Wright, G.H.: An Essay in Deontic Logic and the General Theory of Action. North Holland, Amsterdam (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Trypuz, R., Kulicki, P. (2010). Towards Metalogical Systematisation of Deontic Action Logics Based on Boolean Algebra. In: Governatori, G., Sartor, G. (eds) Deontic Logic in Computer Science. DEON 2010. Lecture Notes in Computer Science(), vol 6181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14183-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14183-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14182-9

  • Online ISBN: 978-3-642-14183-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics