Abstract
In this work we consider the concept of contractive Atanassov’s intuitionistic mapping. In particular, we show that with our definitions, the only strict (strong) contractive negation is the standard one.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Acióly, B.M., Bedregal, B.C.: A quasi-metric topology compatible with inclusion monotonicity on interval space. Reliab. Comput. 3(3), 305–313 (1997)
Atanassov, K.T.: Intuitionistic fuzzy sets. In: Sgurev, V. (ed.) VII ITKR’s Session, Sofia (June 1983) (deposed in Central Science and Technical Library, Bulgarian Academy of Sciences, 1697/84, in Bulgarian)
Atanassov, K.T.: Intuitionistic Fuzzy Sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)
Bedregal, B.C.: On interval fuzzy negations. Technical report, DIMAP/UFRN (2009), http://www.dimap.ufrn.br/bedregal/main-publications.html
Bustince, H., Barrenechea, E., Pagola, M., Fernandez, J.: Interval-valued fuzzy sets constructed from matrices: Application to edge detection. Fuzzy Sets Syst. 160(13), 1819–1840 (2009)
Bustince, H., Burillo, P., Soria, F.: Automorphisms, negations and implication operators. Fuzzy Sets Syst. 134(2), 209–229 (2003)
Bustince, H., Pagola, M., Barrenechea, E., Fernandez, J., Melo-Pinto, P., Couto, P., Tizhoosh, H.R., Montero, J.: Ignorance functions. An application to the calculation of the threshold in prostate ultrasound images. Fuzzy Sets Syst. 161(1), 20–36 (2010)
Deschrijver, G., Kerre, E.: On the relationship between some extensions of fuzzy set theory. Fuzzy Sets Syst. 133(2), 227–235 (2003)
Evans, C., Gariepy, R.F.: Measure theory and fine properties of functions. Studies in advanced mathematics. CRC Press, Boca Raton (1992)
Kolesarova, A., Mesiar, R.: Lipschitzian De Morgan triplets of fuzzy connectives. Submitted to Inform. Sciences
Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)
Santiago, R.H.N., Bedregal, B.C., Acióly, B.M.: Formal aspects of correctness and optimality in interval computations. Form. Asp. Comput. 18(2), 231–243 (2006)
Zadeh, L.A.: Fuzzy sets. Inform. Control 8, 338–353 (1965)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bedregal, B., Bustince, H., Fernandez, J., Deschrijver, G., Mesiar, R. (2010). Atanassov’s Intuitionistic Contractive Fuzzy Negations. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Methods. IPMU 2010. Communications in Computer and Information Science, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14055-6_62
Download citation
DOI: https://doi.org/10.1007/978-3-642-14055-6_62
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14054-9
Online ISBN: 978-3-642-14055-6
eBook Packages: Computer ScienceComputer Science (R0)