Abstract
This paper provides a unified framework for improving PRF(pseudorandom function) advantages of several popular MACs (message authentication codes) based on a blockcipher modeled as RP (random permutation). In many known MACs, the inputs of the underlying blockcipher are defined to be some deterministic affine functions of previously computed outputs of the blockcipher. Keeping the similarity in mind, a class of ADEs (affine domain extensions) and a wide subclass of SADEs (secure ADEs) are introduced in the paper which contain following constructions \(\mathcal{C}\) = { CBC-MAC, GCBC *, OMAC, PMAC }. We prove that all SADEs have PRF advantages O(tq/2n + N(t,q)/2n) where t is the total number of blockcipher computations needed for all q queries and N(t,q) is a parameter defined in the paper. The PRF advantage of any SADE is O(t 2/2n) as we can show that \(N(t,q) \leq {t \choose 2}\). Moreover, N(t,q) = O(tq) for all members of \(\mathcal{C}\) and hence these MACs have improved advantages O(tq / 2n). Eventually, our proposed bounds for CBC-MAC and GCBC * become strictly better than previous best known bounds.
Chapter PDF
Similar content being viewed by others
References
Bellare, M., Guérin, R., Rogaway, P.: XOR MACs: New Methods for Message Authentication Using Finite Pseudorandom Functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 15–28. Springer, Heidelberg (1995)
Bellare, M., Pietrzak, K., Rogaway, P.: Improved Security Analysis for CBC MACs. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 527–545. Springer, Heidelberg (2005)
Bellare, M., Killan, J., Rogaway, P.: The security of the cipher block chanining Message Authentication Code. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer, Heidelberg (1994)
Bernstein, D.J.: A short proof of the unpredictability of cipher block chaining (2005), http://cr.yp.to/papers.html#easycbc ID 24120a1f8b92722b5e1 5fbb6a86521a0
Black, J., Rogaway, P.: CBC MACs for arbitrary length messages. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 197–215. Springer, Heidelberg (2000)
Black, J., Rogaway, P.: A Block-Cipher Mode of Operations for Parallelizable Message Authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 384–397. Springer, Heidelberg (2002)
Damgård, I.B.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)
Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. JACM 33-4, 792–807 (1986)
Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)
Iwata, T., Kurosawa, K.: Stronger Security Bounds for OMAC, TMAC, and XCBC. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 402–415. Springer, Heidelberg (2003)
Jutla, C.S.: PRF Domain Extension using DAG. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 561–580. Springer, Heidelberg (2006)
Kurosawa, K., Iwata, T.: TMAC: Two-Key CBC MAC. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 33–49. Springer, Heidelberg (2003)
Luby, M., Rackoff, C.: How to construct pseudo-random permutations from pseudo-random functions. SIAM Journal on Computing archive 17(2), 373–386 (1988)
Minematsu, K., Matsushima, T.: Improved Security Bounds for PMAC, TMAC, and XCBC. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 434–451. Springer, Heidelberg (2007)
Nandi, M., Mandal, A.: Improved Security Analysis of PMAC. Journal of Mathematical Cryptology 2(2), 149–162 (2008)
Merkle, R.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)
Nandi, M.: A Unified Method for Improving PRF Bounds for a Class of Blockcipher based MACs. Cryptology eprint archive 2009/014 (2009)
Nandi, M.: Improved security analysis for OMAC as a pseudorandom function. Journal of Mathematical Cryptology 3(2), 133–148 (2009)
Nandi, M.: Fast and Secure CBC-Type MAC Algorithms. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 375–393. Springer, Heidelberg (2009)
Nandi, M.: A Simple and Unified Method of Proving Indistinguishability. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 317–334. Springer, Heidelberg (2006)
Patarin, J.: Etude des Générateurs de Permutations Basés sur le Schéma du D.E.S., Phd Thèsis de Doctorat de l’Université de Paris 6 (1991)
Petrank, E., Rackoff, C.: CBC MAC for real-time data sources. Journal of Cryptology 13(3), 315–338 (2000)
Pietrzak, K.: A Tight Bound for EMAC. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 168–179. Springer, Heidelberg (2006)
Sarkar, P.: Pseudo-Random Functions and Parallelizable Modes of Operations of a Block Cipher, http://eprint.iacr.org/2009/217
Vaudenay, S.: Decorrelation over infinite domains: the encrypted CBC-MAC case. Communications in Information and Systems (CIS) 1, 75–85 (2001)
Vaudenay, S.: Decorrelation: A Theory for Block Cipher Security. J. Cryptology 16(4), 249–286 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nandi, M. (2010). A Unified Method for Improving PRF Bounds for a Class of Blockcipher Based MACs. In: Hong, S., Iwata, T. (eds) Fast Software Encryption. FSE 2010. Lecture Notes in Computer Science, vol 6147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13858-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-13858-4_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13857-7
Online ISBN: 978-3-642-13858-4
eBook Packages: Computer ScienceComputer Science (R0)