Urban Road Extraction from High-Resolution Optical Satellite Images | SpringerLink
Skip to main content

Urban Road Extraction from High-Resolution Optical Satellite Images

  • Conference paper
Image Analysis and Recognition (ICIAR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6112))

Included in the following conference series:

  • 2284 Accesses

Abstract

Road extraction research has always been an active research on automatic identification of remote sensing images. With the availability of high spatial resolution images from new generation commercial sensors, how to extract roads quickly, accurately and automatically has been a cutting-edge problem in remote sensing related fields. In this paper, we present a novel road extraction approach which uses a scale space segmentation and two measures of the shape index to filter all regions from the result of the segmentation. The approach makes full use of spectral and geometric properties of roads in the imagery, and proposes a new algorithm named “Road Segments joint Algorithm” to ensure the continuity of roads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mayer, H., Reznik, S.: MCMC linked with implicit shape models and plane sweeping for 3D building façade interpretation in image sequences. In: International Archives of Photogrammetry and Remote Sensing, vol. XXXVI(3), pp. 130–135 (2006)

    Google Scholar 

  2. Vincken, K.: Probabilistic Multi-Scale Image Segmentation by the Hyperstack, Ph.D. thesis, Utrecht University (1995)

    Google Scholar 

  3. Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer Academic Publishers, Dordrecht (1994)

    Google Scholar 

  4. Price, K.: Road grid extraction and verification. In: International Archives of Photogrammetry and Remote Sensing, part 3-2W5, vol. 32, pp. 101–106 (1999)

    Google Scholar 

  5. Quam, L.H.: Road Tracking and Anomaly Detection. In: DARPA Image Understanding Workshop, May 1978, pp. 51–55 (1978)

    Google Scholar 

  6. Nevatia, R., Babu, K.R.: Linear feature extraction. In: DARPA’78, pp. 73–78 (1978)

    Google Scholar 

  7. Bolles, R.C., Quam, L.H., Fischler, M.A., Wolf, H.C.: Automatic determination of image to database correspondence. In: IJCAI’79, pp. 73–78 (1979)

    Google Scholar 

  8. Fischler, M.A., Tenenbaum, J.M., Wolf, H.C.: Detection of roads and linear structures in low- resolution aerial imagery using a multisource knowledge integration technique. In: CGIP, March 1981, vol. 15(3), pp. 201–223 (1981)

    Google Scholar 

  9. Gong, P., Li, X., Xu, B.: Interpretation Theory and Application Method Development for Information Extraction from High Resolution Remotely Sensed Data. Journal of remote sensing 10(1), 1–5 (2006)

    Google Scholar 

  10. Shi, W.Z., Zhu, C.C., Wang, Y.: Road Feature Extraction from Remotely Sensed Image: Review and Prospects. Acta geodaetica et cartographica sinica 30(3) (2001)

    Google Scholar 

  11. Mena, J.B.: State of the art on automatic road extraction for GIS update: a novel classification. Pattern Recognition Letters 24, 3037–3058 (2003)

    Article  Google Scholar 

  12. Gruen, A., Li, H.: Road Extraction from Aerial and Satellite Images by Dynamic Programming. ISPRS Journal of Photogrammetry and Remote Sensing 50(4), 11–20 (1995)

    Article  Google Scholar 

  13. Trinder, J.C.: Semi-automatic Feature Extraction by Snakes. In: Automatic Extraction of Manmade Objects from Aerial and Space Images, Birkhacuser Verlag, Basel (1995)

    Google Scholar 

  14. Merlet, N., Zérubia, J.: New prospects in line detection by dynamic programming. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(4)

    Google Scholar 

  15. Bhattacharya, U., Parui, S.K.: An improved back propagation neural network for detection of road-like features in satellite imagery. International Journal of Remote Sensing 18(16), 3379–3394 (1997)

    Article  Google Scholar 

  16. Baumgartner, A., Steger, C., Mayer, H., Eckstein, W., Heinrich, E.: Automatic road extraction based on multiscale, grouping, and context. Photogrammetric Engineering and Remote Sensing 65(7), 777–785 (1999)

    Google Scholar 

  17. Couloigner, I., Ranchin, T.: Mapping of urban areas: A multiresolution modeling approach for semiautomatic extraction of streets. Photogrammetric Engineering and Remote Sensing 66(7), 867–874 (2000)

    Google Scholar 

  18. Zhu, C.Q., Wang, Y.G., Ma, Q.H.: Road Extraction from High-resolution Remotely Sensed Image Based on Morphological Segmentation. Acta geodaetica et cartographica sinica 33(4), 347–351 (2004)

    MathSciNet  Google Scholar 

  19. An, R., Feng, X.Z., Wang, H.L.: Road Feature Extraction form Remote Sensing Classified Imagery Based on Mathematical Morphology and Analysis of Road Networks. Journal of Image and Graphic 8(7), 798–804 (2003)

    Google Scholar 

  20. Lindeberg, T.: Scale-space for discrete signals. IEEE Transactions on Pattern Analysis and Machine Intelligence 12 (March 1990)

    Google Scholar 

  21. Lifshitz, L.M., Pizer, S.M.: A multi-resolution hierarchical approach to image segmentation based on intensity extrema. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(6) (June 1990)

    Google Scholar 

  22. Henkel, R.D.: Segmentation with synchronising neural oscillators. Tech. Rep., Zentrum fr Kognitionswissenschaften, Universitt auf Bremen (1994)

    Google Scholar 

  23. Henkel, R.D.: Segmentation in scale-space. In: Hlaváč, V., Šára, R. (eds.) CAIP 1995. LNCS, vol. 970. Springer, Heidelberg (1995)

    Google Scholar 

  24. Florack, L.M., ter Haar Romeny, B.M., Koenderink, J.J., Viergever, M.A.: Linear scale-space. Journal of Mathematical Imaging and Vision 4 (1994)

    Google Scholar 

  25. Lindeberg, T., Eklundh, J.O.: Scale detection and region extraction from a scale-space primal sketch. In: Third International Conference on Computer Vision (1990)

    Google Scholar 

  26. Zhang, Q., Couloigner, I.: Automated Road Network Extraction from High Resolution Multi-Spectral Imagery. In: ASPRS 2006 Annual Conference, Reno, Nevada (2006a)

    Google Scholar 

  27. Youn, J., Bethel, J.S.: Adaptive snakes for urban road extraction. In: International Archives of Photogrammetry and Remote Sensing, part B3, vol. 35, pp. 465–470 (2004)

    Google Scholar 

  28. Hinz, S.: Automatic road extraction in urban scenes and beyond. In: International Archives of Photogrammetry and Remote Sensing, part B3, vol. 35, pp. 349–355 (2004)

    Google Scholar 

  29. Borgefors, G.: Distance Transforms in Digital Images. Computer Vision, Graphics and Image Processing 34, 344–371 (1986)

    Article  Google Scholar 

  30. Chiang, J.Y., Tue, S.C., Leu, Y.C.: A New Algorithm for Line Image Vectorization. Pattern Recognition 31(10), 1541–1549 (1998)

    Article  Google Scholar 

  31. di Baja, G.S.: Well-Shaped, Stable, and Reversible Skeletons from the (3,4)-Distance Transform. Journal of VisualCommunication and Image Representation (1994)

    Google Scholar 

  32. Lam, L., Lee, S.-W., Suen, C.Y.: Thinning Methodologies A Comprehensive Survey. IEEE Transactions on PAMI 14(9), 869–885 (1992)

    Google Scholar 

  33. Niblack, C.W., Gibbons, P.B., Capson, D.W.: Generating Skeletons and Centerlines from the Distance Transform. CVGIP: Graphical Models and Image Processing 54(5), 420–437 (1992)

    Article  Google Scholar 

  34. Korting, T.S., Fonseca, L.M.G., Dutra, L.V., Silva, F.C.: Image Re-Segmentation – A New Approach Applied to Urban Imagery, pp. 467–472 (2008)

    Google Scholar 

  35. Naouai, M., Hamouda, A., Weber, C.: Detection of road in a high resolution image using a multicriteria directional. In: IADIS Computer Graphics, Visualization, Computer Vision and Image Processing (CGVCVIP) 2009 conference, Algarve, Portugal, June 20–22 (2009)

    Google Scholar 

  36. Naouai, M.: Atef Hamouda et Christiane Weber, Extraction de route dans une image à très haute résolution spatiale, Taima’09, Mai 4-9, Hammamet Tunisie (2009)

    Google Scholar 

  37. Rosin, P.L.: Measuring rectangularity. Mach. Vis. Appl. 11(4) (December 1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Naouai, M., Hamouda, A., Weber, C. (2010). Urban Road Extraction from High-Resolution Optical Satellite Images. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2010. Lecture Notes in Computer Science, vol 6112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13775-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13775-4_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13774-7

  • Online ISBN: 978-3-642-13775-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics