Abstract
The combining approach to classification is nowadays one of the most promising directions in pattern recognition. There are many methods of decision-making that can be used by an ensemble of classifiers. The most popular methods have their origins in voting, where the decision of a common classifier is a combination of individual classifiers’ outputs, i.e. class numbers or values of discriminants. This work focuses on the problem of fuser design. We propose to train a fusion block by algorithms that have their origin in neural and evolutionary approaches. As we have shown in previous works, we can produce better combining classifiers than Oracle can. Presented results of experiments confirm our previous observations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kuncheva, L.I., Bezdek, J.C., Duin, R.P.W.: Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recognition 34, 299–314 (2001)
Kuncheva, L.I.: Combining pattern classifiers: Methods and algorithms. Wiley, Chichester (2004)
Biggio, B., Fumera, G., Roli, F.: Bayesian Analysis of Linear Combiners. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 292–301. Springer, Heidelberg (2007)
Duin, R.P.W., et al.: PRTools4, A Matlab Toolbox for Pattern Recognition. Delft University of Technology, The Netherlands (2004)
Woods, K., Kegelmeyer, W.P.: Combination of multiple classifiers using local accuracy estimates. IEEE Transactions on PAMI 19(4), 405–410 (1997)
Woźniak, M., Jackowski, K.: Some remarks on chosen methods of classifier fusion based on weighted voting. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS, vol. 5572, pp. 541–548. Springer, Heidelberg (2009)
Michalewicz, Z.: Genetics Algorithms + Data Structures = Evolutions Programs. Springer, Berlin (1996)
Asuncion, A., Newman, D.J.: UCI ML Repository, Irvine, CA: University of California, School of Information and Computer Science (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html
Zmyślony, M., Woźniak, M.: Influence of fusion methods on quality of classification. Advanced Simulation of Systems, 117–120 (2010)
Kuncheva, L.I., Bezdek, J.C., Duin, R.P.W.: Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recognition 34, 299–314 (2001)
Giacinto, G., Roli, F., Fumera, G.: Design of Effective Multiple Classifier Systems by Clustering of Classifiers. In: Proceedings of the 15th International Conference on Pattern Recognition (ICPR 2000), vol. 2, p. 2160 (2000)
Marcialis, G.L., Roli, F.: Fusion of Face Recognition Algorithms for Video-Based Surveillance Systems. In: Foresti, G.L., Regazzoni, C., Varshney, P. (eds.) Multisensor Surveillance Systems: The Fusion Perspective. Kluwer Academic Publishers, Dordrecht (2003)
Wolpert, D.H.: The supervised learning no-free-lunch theorems. In: Proceedings of the 6th Online World Conference on Soft Computing in Industrial Applications (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wozniak, M., Zmyslony, M. (2010). Designing Fusers on the Basis of Discriminants – Evolutionary and Neural Methods of Training. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds) Hybrid Artificial Intelligence Systems. HAIS 2010. Lecture Notes in Computer Science(), vol 6076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13769-3_72
Download citation
DOI: https://doi.org/10.1007/978-3-642-13769-3_72
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13768-6
Online ISBN: 978-3-642-13769-3
eBook Packages: Computer ScienceComputer Science (R0)