Designing Fusers on the Basis of Discriminants – Evolutionary and Neural Methods of Training | SpringerLink
Skip to main content

Designing Fusers on the Basis of Discriminants – Evolutionary and Neural Methods of Training

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6076))

Included in the following conference series:

Abstract

The combining approach to classification is nowadays one of the most promising directions in pattern recognition. There are many methods of decision-making that can be used by an ensemble of classifiers. The most popular methods have their origins in voting, where the decision of a common classifier is a combination of individual classifiers’ outputs, i.e. class numbers or values of discriminants. This work focuses on the problem of fuser design. We propose to train a fusion block by algorithms that have their origin in neural and evolutionary approaches. As we have shown in previous works, we can produce better combining classifiers than Oracle can. Presented results of experiments confirm our previous observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kuncheva, L.I., Bezdek, J.C., Duin, R.P.W.: Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recognition 34, 299–314 (2001)

    Article  MATH  Google Scholar 

  2. Kuncheva, L.I.: Combining pattern classifiers: Methods and algorithms. Wiley, Chichester (2004)

    Book  MATH  Google Scholar 

  3. Biggio, B., Fumera, G., Roli, F.: Bayesian Analysis of Linear Combiners. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 292–301. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Duin, R.P.W., et al.: PRTools4, A Matlab Toolbox for Pattern Recognition. Delft University of Technology, The Netherlands (2004)

    Google Scholar 

  5. Woods, K., Kegelmeyer, W.P.: Combination of multiple classifiers using local accuracy estimates. IEEE Transactions on PAMI 19(4), 405–410 (1997)

    Article  Google Scholar 

  6. Woźniak, M., Jackowski, K.: Some remarks on chosen methods of classifier fusion based on weighted voting. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS, vol. 5572, pp. 541–548. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Michalewicz, Z.: Genetics Algorithms + Data Structures = Evolutions Programs. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  8. Asuncion, A., Newman, D.J.: UCI ML Repository, Irvine, CA: University of California, School of Information and Computer Science (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

  9. Zmyślony, M., Woźniak, M.: Influence of fusion methods on quality of classification. Advanced Simulation of Systems, 117–120 (2010)

    Google Scholar 

  10. Kuncheva, L.I., Bezdek, J.C., Duin, R.P.W.: Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recognition 34, 299–314 (2001)

    Article  MATH  Google Scholar 

  11. Giacinto, G., Roli, F., Fumera, G.: Design of Effective Multiple Classifier Systems by Clustering of Classifiers. In: Proceedings of the 15th International Conference on Pattern Recognition (ICPR 2000), vol. 2, p. 2160 (2000)

    Google Scholar 

  12. Marcialis, G.L., Roli, F.: Fusion of Face Recognition Algorithms for Video-Based Surveillance Systems. In: Foresti, G.L., Regazzoni, C., Varshney, P. (eds.) Multisensor Surveillance Systems: The Fusion Perspective. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  13. Wolpert, D.H.: The supervised learning no-free-lunch theorems. In: Proceedings of the 6th Online World Conference on Soft Computing in Industrial Applications (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wozniak, M., Zmyslony, M. (2010). Designing Fusers on the Basis of Discriminants – Evolutionary and Neural Methods of Training. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds) Hybrid Artificial Intelligence Systems. HAIS 2010. Lecture Notes in Computer Science(), vol 6076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13769-3_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13769-3_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13768-6

  • Online ISBN: 978-3-642-13769-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics